

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport



# 18 years of performance evaluation of molecular detection of enteroviruses by QCMD

<u>Oliver Donoso Mantke<sup>1</sup></u>, Kimberley S.M. Benschop<sup>2</sup>, Harry Staines<sup>1,3</sup>, Emily Mckloud<sup>1</sup>, Elaine McCulloch<sup>1</sup>, Dorothy Montgomery<sup>1</sup>, Greg Sutton<sup>1</sup>, Anton van Loon<sup>1</sup>

<sup>1</sup> Quality Control *for* Molecular Diagnostics (QCMD), Glasgow, UK <sup>2</sup> National Institute for Public Health and the Environment (RIVM), Bilthoven, NL <sup>3</sup> Sigma Statistical Services, Balmullo, UK





- Enteroviruses Need for early, rapid detection & surveillance
- QCMD Enterovirus RNA EQA Programme, 2005-2022
- Performance data by laboratory type, method/assay, and pathogen type
- Discussion of results



#### Human enteroviruses

https://ictv.global/report/chapter/picornaviridae/picornaviridae/enterovirus



Species E-L are not human pathogenic



#### Enteroviruses and their clinical manifestations



### Validated and quality-assured EV diagnostic

#### Crucial for:

- **Prognosis and supportive care** in case of severe diseases
- Immediate infection and outbreak control measures; monitoring of (new/recombinant) EVs
- Assessing disease burden of severe conditions
- Identifying alternative treatment options (novel antivirals, immunotherapies, vaccines)
- Excluding circulation of wild or vaccine-derived poliovirus



## **RT-PCR targeting 5'UTR for screening**



- Recommended as primary assay for EV detection/screening. (fast turn-around time and high sensitivity over virus isolation)
- Typically detects all EV types/species with equal sensitivity (but also potentially RVs); IMPORTANT: assays need to be frequently updated to ensure that all types will be detected.

Harvala H, Broberg E, Benschop K, Berginc N, Ladhani S, Susi P, et al. Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. J Clin Virol. 2018 Apr;101:11-17.





- Enteroviruses Need for early, rapid detection & surveillance
- QCMD Enterovirus RNA EQA Programme, 2005-2022
- Performance data by laboratory type, method/assay, and pathogen type
- Discussion of results



#### **QCMD Enterovirus RNA EQA Programme**

- Introduced in 1998
- Accredited since 2011

Aim: To assess the ability of laboratories molecular assays to detect different types and concentrations of enterovirus (EV).

- Material source: Cultured and/or Clinical material
- Sample matrix: Transport medium (TM)
- Covering clinical range (diluted samples are from same stock/batch within a panel)
- Sample formats: Lyophilised (prior to 2014), liquid frozen (from 2014 onwards)



|      | Panels    |                |                 |                     |   |  |  |  |  |
|------|-----------|----------------|-----------------|---------------------|---|--|--|--|--|
| Year | Challenge | No. of samples | Core<br>samples | Educational samples |   |  |  |  |  |
|      |           |                |                 |                     | ſ |  |  |  |  |
| 2005 | S         | 12             | 12              | 0                   |   |  |  |  |  |
| 2006 | S         | 12             | 12              | 0                   |   |  |  |  |  |
| 2007 | S         | 12             | 12              | 0                   |   |  |  |  |  |
| 2008 | S         | 12             | 12              | 0                   |   |  |  |  |  |
| 2009 | S         | 12             | 12              | 0                   |   |  |  |  |  |
| 2010 | S         | 12             | 12              | 0                   |   |  |  |  |  |
| 2011 | S         | 12             | 12              | 0                   | - |  |  |  |  |
| 2012 | S         | 12             | 12              | 0                   |   |  |  |  |  |
| 2013 | S         | 12             | 9               | 3                   |   |  |  |  |  |
| 2014 | S         | 12             | 9               | 3                   |   |  |  |  |  |
| 2015 | C1        | 5              | 5               | 0                   |   |  |  |  |  |
|      | C2        | 5              | 4               | 1                   |   |  |  |  |  |
| 2016 | C1        | 5              | 4               | 1                   |   |  |  |  |  |
|      | C2        | 5              | 4               | 1                   |   |  |  |  |  |
| 2017 | S         | 10             | 9               | 1                   |   |  |  |  |  |
|      | C1        | 5              | 4               | 1                   |   |  |  |  |  |
|      | C2        | 5              | 5               | 0                   |   |  |  |  |  |
| 2018 | S         | 10             | 9               | 1                   |   |  |  |  |  |
|      | C1        | 5              | 4               | 1                   |   |  |  |  |  |
|      | C2        | 5              | 5               | 0                   |   |  |  |  |  |
| 2019 | S         | 10             | 9               | 1                   |   |  |  |  |  |
|      | C1        | 5              | 4               | 1                   |   |  |  |  |  |
|      | C2        | 5              | 5               | 0                   |   |  |  |  |  |
| 2020 | S         | 10             | 9               | 1                   |   |  |  |  |  |
|      | C1        | 5              | 5               | 0                   |   |  |  |  |  |
|      | C2        | 5              | 5               | 0                   |   |  |  |  |  |
| 2021 | S         | 10             | 10              | 0                   | * |  |  |  |  |
|      | C1        | 5              | 5               | 0                   |   |  |  |  |  |
|      | C2        | 5              | 5               | 0                   |   |  |  |  |  |
| 2022 | S         | 10             | 10              | 0                   |   |  |  |  |  |
|      | C1        | 5              | 5               | 0                   |   |  |  |  |  |
|      | C2        | 5              | 5               | 0                   |   |  |  |  |  |

#### **QCMD EV Performance Study, 2005-2022**

#### Panel distribution & participation

- 32 panels conducted
- Either single annual (S) or biannual (C1,C2)
- Since 2015, flexible formats to meet regulatory needs
- 3,675 datasets with results evaluated
- Returned by 699\* participants worldwide (via ITEMS)
  - 621\* Diagnostic laboratories
  - 78\* Public Health (PH) laboratories
- Each panel: 'Core' and/or 'core' and 'educational' samples

counted only once independent of participation frequency



#### Panel compositions, 2005-2022

Number of samples included in the panels per virus type (core and educational)

[sensitivity: to detect true pos. samples correctly]

#### Negatives

[true neg. (false positivity)/

non-EV types (specificity)]

| Year    | Challenge | CVA16 | EV-A71 | CVA9 | CVB3 | EG       | Е 9      | E11 | E16      | E18 | E25 | E30 | CVA21 | CVA24 | PV3 | EV-D68 P | EV-D68<br>B3 | Negative | HPeV-1 | HPeV-3 | RV-A16 |
|---------|-----------|-------|--------|------|------|----------|----------|-----|----------|-----|-----|-----|-------|-------|-----|----------|--------------|----------|--------|--------|--------|
| 2005    | S         | -     | 2      | -    | 3    | 11       | 2        | -   |          | -   |     |     | -     | 11    | -   |          | -            | 1        | 1      | -      | 1      |
| 2006    | S         | 1     | -      |      | 3    |          |          |     | 1        |     | -   | 2   | -     |       | 1   | 1        | -            | 3        |        | -      |        |
| 2007    | S         | -     | 1      |      | 3    | <u> </u> |          | 2   |          |     | -   | 2   | -     |       | 1   |          |              | 1        |        | 2      |        |
| 2008    | S         | 1     | 2      | -    | 3    |          |          | -   | 1        | -   | -   |     | -     | 1     | 1   |          | -            | 1        |        | 2      | -      |
| 2009    | S         | 1     | 2      |      | 3    |          |          | 1   | 1        |     |     |     |       |       | 1   |          |              | 1        |        | 2      |        |
| 2010    | <u> </u>  | -     | 2      | 2    | 1    |          |          | 2   |          | -   | -   | 2   | -     | -     |     |          | -            | 1        |        | 2      | -      |
| 2011    | <u> </u>  | 1     | 2      |      |      |          |          | 2   |          |     | -   | 1   | 1     | 1     |     | 2        |              | 1        |        |        | 1      |
| 2012    | S         | 1     | 1      | 1    | 2    |          |          | 2   |          |     |     | 1   | -     | 1     |     | 2        | -            | 1        |        |        |        |
| 2013    | S         | 1     | 1      | 1    | 2    |          |          | 2   |          |     |     | 1   |       | 1     |     | 2        |              | 1        |        |        |        |
| 2014    | <u> </u>  | 1     | 2      | 1    | 2    |          |          | 2   |          | -   |     |     | -     | 1     |     | 1        | -            | 2        |        |        |        |
| 2015    | C1        | -     | 1      | -    | 2    | -        | -        | -   | -        | -   | -   | -   | -     | -     | -   | 1        | -            | 1        | -      | -      | -      |
| 2015    | C2        |       |        | 1    | 3    |          |          | 1   |          |     |     |     |       |       |     |          | -            |          |        |        |        |
| 2016    | C1        | -     | -      | 1    | 1    | -        | -        | 1   | -        | -   | -   | 1   | -     | 1     | -   | -        | -            | -        | -      | -      | -      |
| 2010    | C2        |       | 2      |      | 1    |          | <u> </u> |     | <u> </u> |     |     |     |       |       |     | 1        | -            | 1        |        |        |        |
|         | C1        | -     | -      | 1    | 1    | -        | -        | 1   | -        | -   | -   | 1   | -     | 1     | -   | -        | -            | -        | -      | -      | -      |
| 2017    | C2        | -     | 2      | -    | 1    | -        | -        | -   | -        | -   | -   | -   | -     | -     | -   | 1        | -            | 1        | -      | -      | -      |
|         | <u> </u>  |       | 2      | 1    | 2    |          |          | 1   |          |     |     | 1   |       | 1     |     | 1        | -            | 1        |        |        |        |
|         | C1        | -     | 1      | 1    | -    | -        | -        | -   | -        | -   | -   | 1   | -     | 1     | -   | 1        | -            | -        | -      | -      | -      |
| 2018    | C2        | -     | 1      | -    | 2    | -        | -        | 1   | -        | -   | -   | -   | -     | -     | -   | -        | -            | 1        | -      | -      | -      |
|         | <u> </u>  |       | 2      | 1    | 2    |          |          | 1   |          |     |     | 1   |       | 1     |     | 1        | -            | 1        |        |        |        |
|         | C1        | -     | -      | 1    | -    | -        | -        | -   | -        | -   | 1   | -   | -     | 1     | -   | 1        | -            | 1        | -      | -      | -      |
| 2019    | C2        | -     | 1      | -    | -    | 1        | -        | -   | -        | 1   | -   | 1   | -     | -     | -   | 1        | -            | -        | -      | -      | -      |
|         | <u> </u>  |       | 1      | 1    | -    | 1        |          |     | -        | 1   | 1   | 1   |       | 1     |     | 22       | -            | 1        |        |        | -      |
|         | C1        | -     | -      | 1    | -    | -        | -        | -   | -        | -   | 1   | -   | -     | 1     | -   | 1        | -            | 1        | -      | -      | -      |
| 2020    | C2        | -     | 1      | -    | -    | 1        | -        | -   | -        | 1   | -   | 1   | -     | -     | -   | 1        | -            | -        | -      | -      | -      |
|         | <u> </u>  |       | 1      | 1    | -    | 1        |          |     |          | 1   | 11  | 1   | -     | 11    |     | 1        | 11           | 1        |        |        | -      |
|         | C1        | -     | -      | 1    | -    | -        | -        | -   | -        | -   | 1   | -   | -     | 1     | -   | -        | 1            | 1        | -      | -      | -      |
| 2021 C2 | C2        | -     | 1      | -    | -    | 1        | -        | -   | -        | 1   | -   | 1   | -     | -     | -   | 1        | -            | -        | -      | -      | -      |
|         | S         |       | 1      | 1    | -    | 1        |          | -   | -        | 1   | 11  | 1   | -     | 1     | -   | 1        | 1            | 1        |        | -      |        |
|         | C1        | -     | -      | 1    | -    | 1        | -        | -   | -        | -   | 1   | -   | -     | 1     | -   | -        | -            | 1        | -      | -      | -      |
| 2022    | C2        | -     | 1      | -    | -    | -        | -        | -   | -        | 1   | -   | 1   | -     | -     | -   | 1        | 1            | -        | -      | -      | -      |
| 5       | S         | -     | 1      | 1    | -    | 1        | -        | -   | -        | 1   | 1   | 1   | -     | 1     | -   | 1        | 1            | 1        | -      | -      | -      |

#### Number of samples tested, 2005-2022

Spilt into core samples only and all samples tested by laboratory type and assay type

|      |            | Core sa             | amples     |                     | All samples |                   |                                         |        |  |  |  |
|------|------------|---------------------|------------|---------------------|-------------|-------------------|-----------------------------------------|--------|--|--|--|
|      |            | n=4:                | 1087       |                     | n=44434     |                   |                                         |        |  |  |  |
|      | Dia        | gnostic             | Publi      | ic health           | Dia         | gnostic           | Public health<br>laboratories<br>n=5068 |        |  |  |  |
|      | labo<br>n= | ratories<br>36383   | labo<br>n= | ratories<br>=4704   | labo<br>n=  | ratories<br>39366 |                                         |        |  |  |  |
| Year | In-house   | In-house Commercial |            | In-house Commercial |             | Commercial        | In-house Commercia                      |        |  |  |  |
|      | n=19588    | n=16795             | n=3537     | n=1167              | n=20959     | n=18407           | n=3794                                  | n=1274 |  |  |  |
| 2005 | 876        | 132                 | 180        | 24                  | 876         | 132               | 180                                     | 24     |  |  |  |
| 2006 | 1224       | 240                 | 180        | 12                  | 1224        | 240               | 180                                     | 12     |  |  |  |
| 2007 | 1284       | 360                 | 180        | 24                  | 1284        | 360               | 180                                     | 24     |  |  |  |
| 2008 | 1428       | 480                 | 180        | 24                  | 1428        | 480               | 180                                     | 24     |  |  |  |
| 2009 | 1332       | 720                 | 228        | 84                  | 1332        | 720               | 228                                     | 84     |  |  |  |
| 2010 | 1308       | 696                 | 228        | 132                 | 1308        | 696               | 228                                     | 132    |  |  |  |
| 2011 | 1368       | 888                 | 264        | 168                 | 1368        | 888               | 264                                     | 168    |  |  |  |
| 2012 | 1428       | 1080                | 252        | 132                 | 1428        | 1080              | 252                                     | 132    |  |  |  |
| 2013 | 1053       | 954                 | 144        | 99                  | 1404        | 1272              | 192                                     | 132    |  |  |  |
| 2014 | 999        | 1098                | 225        | 99                  | 1332        | 1464              | 300                                     | 132    |  |  |  |
| 2015 | 953        | 936                 | 211        | 58                  | 1060        | 1045              | 235                                     | 65     |  |  |  |
| 2016 | 860        | 1004                | 180        | 60                  | 1075        | 1255              | 225                                     | 75     |  |  |  |
| 2017 | 985        | 1490                | 171        | 58                  | 1095        | 1655              | 190                                     | 65     |  |  |  |
| 2018 | 927        | 1592                | 180        | 45                  | 1030        | 1765              | 200                                     | 50     |  |  |  |
| 2019 | 993        | 1511                | 180        | 45                  | 1105        | 1680              | 200                                     | 50     |  |  |  |
| 2020 | 845        | 1169                | 159        | 38                  | 885         | 1230              | 165                                     | 40     |  |  |  |
| 2021 | 885        | 1250                | 200        | 30                  | 885         | 1250              | 200                                     | 30     |  |  |  |
| 2022 | 840        | 1195                | 195        | 35                  | 840         | 1195              | 195                                     | 35     |  |  |  |

• Total of 44,434 samples

• <u>Performance analysis for:</u>

- Core (n= 41,087)

- All samples (incl. educational, n= 3,347)





- Enteroviruses Need for early, rapid detection & surveillance
- QCMD Enterovirus RNA EQA Programme, 2005-2022
- Performance data by laboratory type, method/assay, and pathogen type
- Discussion of results



#### In-house vs commercial assays

| Year  | Dia            | gnostic laborato | ries  | Public health laboratories |                |       |  |  |
|-------|----------------|------------------|-------|----------------------------|----------------|-------|--|--|
|       | In-house       | Commercial       | Total | In-house                   | Commercial     | Total |  |  |
|       | n (% of total) | n (% of total)   | n     | n (% of total)             | n (% of total) | n     |  |  |
| 2005  | 69 (88.5%)     | 9 (11.5%)        | 78    | 14 (87.5%)                 | 2 (12.5%)      | 16    |  |  |
| 2006  | 89 (83.2%)     | 18 (16.8%)       | 107   | 12 (92.3%)                 | 1 (7.7%)       | 13    |  |  |
| 2007  | 99 (82.5%)     | 21 (17.5%)       | 120   | 15 (88.3%)                 | 2 (11.7%)      | 17    |  |  |
| 2008  | 111 (75.5%)    | 36 (24.5%)       | 147   | 15 (88.3%)                 | 2 (11.7%)      | 17    |  |  |
| 2009  | 105 (67.3%)    | 51 (32.7%)       | 156   | 17 (73.9%)                 | 6 (26.1%)      | 23    |  |  |
| 2010  | 106 (66.3%)    | 54 (33.7%)       | 160   | 15 (57.7%)                 | 11 (42.3%)     | 26    |  |  |
| 2011  | 109 (61.2%)    | 69 (38.8%)       | 178   | 18 (58.1%)                 | 13 (41.9%)     | 31    |  |  |
| 2012  | 106 (56.7%)    | 81 (43.3%)       | 187   | 17 (60.7%)                 | 11 (39.3%)     | 28    |  |  |
| 2013  | 108 (54.3%)    | 91 (45.7%)       | 199   | 14 (58.3%)                 | 10 (41.7%)     | 24    |  |  |
| 2014  | 105 (50.0%)    | 105 (50.0%)      | 210   | 18 (62.1%)                 | 11 (37.9%)     | 29    |  |  |
| 2015  | 102 (51.3%)    | 97 (48.7%)       | 199   | 18 (75.0%)                 | 6 (25.0%)      | 24    |  |  |
| 2016  | 102 (47.0%)    | 115 (53.0%)      | 217   | 18 (72.0%)                 | 7 (28.0%)      | 25    |  |  |
| 2017  | 103 (41.9%)    | 143 (58.1%)      | 246   | 14 (66.7%)                 | 7 (33.3%)      | 21    |  |  |
| 2018  | 97 (39.1%)     | 151 (60.9%)      | 248   | 16 (76.2%)                 | 5 (23.8%)      | 21    |  |  |
| 2019  | 98 (40.3%)     | 145 (59.7%)      | 243   | 16 (76.2%)                 | 5 (23.8%)      | 21    |  |  |
| 2020  | 85 (42.5%)     | 115 (57.5%)      | 200   | 15 (79.0%)                 | 4 (21.0%)      | 19    |  |  |
| 2021  | 83 (42.6%)     | 112 (57.4%)      | 195   | 16 (84.2%)                 | 3 (15.8%)      | 19    |  |  |
| 2022  | 79 (41.6%)     | 111 (58.4%)      | 190   | 17 (81.0%)                 | 4 (19.0%)      | 21    |  |  |
| Total | 1756           | 1524             | 3280  | 285                        | 110            | 395   |  |  |
|       | (53.5%)        | (46.5%)          |       | (72.2%)                    | (27.8%)        |       |  |  |

 Diagnostic laboratories showed transition from in-house to commercial assays.

Number of panels tested by laboratory type and assay type, 2005-2022 (**3,675 datasets**)



### Overall performance over time (laboratories)





### Binary logistic regression model on pooled data



- Diagnostic > PH laboratories (varied)
- Commercial > in-house assays (linked with Diagnostic laboratories)

Performance on core samples tested **by laboratory and assay type (pooled)**, 2005-2022



#### Performance of most frequent used 5 assays



Percent Correct

- Up to 25 different commercial assays were used over time with overall performance of 92.7% (64.4 to 100%).
- TOP 5 ranged between
  87.1% (Argene) to 99.7% (ELItech)

Assay-related performance with odds ratios of **top 5 commercial assays most used**, 2005-2022



## Detection of different EV types pooled over time





### Detection of EV types by laboratory type



 PH laboratories showed a larger variation similar as for the overall performance.

True positive rates (sensitivity) on core samples by laboratory type, 2005-2022



### Detection of EV types by assay type



 Commercial assays showed lower detection rates for E9, EV-D68 B3, and PV3.

True positive rates (sensitivity) on core samples by assay type, 2005-2022



### False positivity & detection of non-EV types

|      | %                 |            |      |             |      |          |          |  |  |  |
|------|-------------------|------------|------|-------------|------|----------|----------|--|--|--|
|      | correctly         |            |      |             |      |          |          |  |  |  |
|      | detected          |            |      |             |      |          |          |  |  |  |
|      | Sensitivity       | False      |      | Specificity |      |          |          |  |  |  |
|      |                   | positivity | _    |             |      |          | negative |  |  |  |
|      | a                 | é          | s 1  | s 3         | 16   |          | and non- |  |  |  |
|      | itiv              | ativ       | viru | viru        | l su | >        | Ev types |  |  |  |
|      | pos               | neg        | hor  | hor         | ovir | ш<br>с   | combined |  |  |  |
| ear  | ue<br>ore<br>/ ty | en.        | arec | arec        | Jine | l no     |          |  |  |  |
| ۲e   | П со Ц            | μ, μ       | Pa   | Pa          | R    | al<br>ty |          |  |  |  |
| 2005 | 71.0              | 3.0        | 7.9  |             | 14.9 | 11.4     | 8.6      |  |  |  |
| 2006 | 74.8              | 4.1        |      |             |      |          | 4.1      |  |  |  |
| 2007 | 83.1              | 7.8        |      | 3.9         |      | 3.9      | 5.2      |  |  |  |
| 2008 | 84.8              | 4.5        |      | 3.7         |      | 3.7      | 4.0      |  |  |  |
| 2009 | 77.6              | 6.1        |      | 2.8         |      | 2.8      | 3.9      |  |  |  |
| 2010 | 88.1              | 6.6        |      | 6.1         |      | 6.1      | 6.3      |  |  |  |
| 2011 | 84.6              | 2.7        |      |             | 10.7 | 10.7     | 6.7      |  |  |  |
| 2012 | 81.0              | 0.8        |      |             |      |          | 0.8      |  |  |  |
| 2013 | 96.7              | 0.4        |      |             |      |          | 0.4      |  |  |  |
| 2014 | 96.5              | 2.0        |      |             |      |          | 2.0      |  |  |  |
| 2015 | 97.5              | 1.7        |      |             |      |          | 1.7      |  |  |  |
| 2016 | 97.4              | 1.2        |      |             |      |          | 1.2      |  |  |  |
| 2017 | 96.3              | 0.3        |      |             |      |          | 0.3      |  |  |  |
| 2018 | 96.6              | 1.0        |      |             |      |          | 1.0      |  |  |  |
| 2019 | 96.0              | 1.6        |      |             |      |          | 1.6      |  |  |  |
| 2020 | 97.5              | 2.2        |      |             |      |          | 2.2      |  |  |  |
| 2021 | 95.6              | 2.1        |      |             |      |          | 2.1      |  |  |  |
| 2022 | 96.4              | 1.8        |      |             |      |          | 1.8      |  |  |  |

• False positivity rate was low (overall 2.5%) and varied over time.

No significant difference between laboratory types. Commercial assays had a lower FP rate compared to in-house assays (data not shown).

• Overall rate of incorrectly detected specificity samples was 5.7%.

Highest for Rhinovirus 16, followed by HPeV-1 and HPeV-3

No significant difference between laboratory types or assay types (data not shown).





• Quality control of EV molecular assays is key for maintaining high-quality diagnostic

#### Performance analysis from 18 years consecutive proficiency testing results shows:

- **Overall performance improved** for both diagnostic and PH laboratories over time
- In-house assays were mainly used; however, transition to commercial assays was seen
- In-house assays and commercial assays showed similar performance
- **<u>CAVE</u>**: varying performance, certain types can be missed, not always distinguishing RVs/EVs!





The inclusion of different EV types of clinical and public health relevance remains a crucial part of the EQA, as differentiation between these types should be regularly evaluated considering their varying disease patterns, changing epidemiology and emergence of new/recombinant strains.

#### Limitation of the current EQA schemes are:

- inclusion of virus strains difficult to culture is not possible with our approach (using cultured materials);
- due to low number of quantitative results, these analyses were not part of this evaluation.



#### Feedback & Questions

#### **PD Dr. Oliver Donoso Mantke**

**QCMD Scientific Advisor** 







