

How EQA can be used to check whether laboratory performance is clinically appropriate

Prof. Marc Thelen PhD, SKML, the Netherlands

Session: Clinical performance specifications and misclassification of patients EQALM Symposium, Vienna 2024

- Introducing the players in the relationship between analytical performance and clinical misclassification
 - Analytical performance in terms of bias and imprecision
 - Patient result distribution around decision limits
 - Appropriateness of the **decision limits**
- Example: EQA study on AP albumin for classification on protein-loss
- Example: EQA study on AP Chloride for classification acidosis
- Example: EQA study on AP hs-c-trop for NSTEMI classification
- Example: EQA study on interaction between ref-interval and AP

The players in classification

1. Analytical performance: Bias and imprecision

2. Result distribution in test population

2. Result distribution in test population: intended use

3. Adequate decision limits

Nephrol Dial Transplant (2022) 37: 1792-1799 doi: 10.1093/ndt/gfaa375 Advance Access publication 24 December 2020

EQALA

Serum albumin measurement in nephrology: room for improvement

Marith van Schrojenstein Lantman 💿 ^{1,2,3}, Anne-Els van de Logt⁴, Marc Thelen^{1,2,3}, Jack F. Wetzels⁴ and Miranda van Berkel¹

Albumin method comparison in Patient samples with different CKD stage

DE GRUYTER

Clin Chem Lab Med 2023; 61(12): 2167-2177

Marith van Schrojenstein Lantman*, Anne-Els van de Logt, Elma Prudon-Rosmulder, Marloes Langelaan, Ayşe Y. Demir, Steef Kurstjens, Armando van der Horst, Aldy Kuypers, Aram Greuter, Jenny Kootstra-Ros, Eline van der Hagen, Marlies Oostendorp, Roseri de Beer, Christian Ramakers, Dirk Bakkeren, Fokke Lindeboom, Dennis van de Wijngaart, Marc Thelen, Jack Wetzels and Miranda van Berkel

Albumin determined by bromocresol green leads to erroneous results in routine evaluation of patients with chronic kidney disease

EQAL

skm) BCG underclassification of protein wasting

Misclassifiation due to

- 1. AP: biased methods
- 2. AP: imprecise methods
- 3. Result distribution
- Improper decision limits (in combination with 1)

EQAL

Second example: Chloride

skm

∆ CI⁻ (%) from ICP-IDMS

DE GRUYTER

Letter to the Editor

Jenny E. Kootstra-Ros*, Eline A.E. van der Hagen, Marith van Schrojenstein Lantman, Marc Thelen and Miranda van Berkel, on behalf of the SKML General Clinical Chemistry Group

(In)direct chloride ISE measurements, room for improvement

Some have **positive** bias in **high** bicarbonate samples Others have **negative** bias in **low** bicarbonate samples What do you prefer?

> **Intended use** determines which nonselectivity bias is preferable

- Calculate anion gap in metabolic acidosis
- Calculate anion gap in metabolic alkalosis

skml

"You are the only EQA with these findings"

Eqalm survey

Do you see Neg Bias in Roche Chloride?

- 1. Hmm, now that you mention it, we see it
- 2. No, we only compare to method group and Roche agrees with Roche

3. No

Follow up EQALM survey Let us know the bicarbonate concentration in your Chloride samples

Misclassification due to 1. AP: non-selectivity bias

EQA organizer	Sample	Method target	Target target Chloride (mmol/l)	Roche, Cobas (mmol/l)	Abs Bias (mmol/I)
Netherlands,	2021 low	ICP-	89.3	86.7 (N=112)	-2.6
SKML	2021 spy	IDMS	106.1	105.2 (N=224)	-0.9
Germany,	KS4/22 A	ICP-OES	103.6	94.9 (N=263)	-8.7
RfB	KS7/22 B		143.8	138 (N=221)	-5.8
Germany,	Jan 22/2	ICP-	85.8	86.6 (N=258)	0.8
Instand	Oct 22/1	IDMS	136.0	130 (N=262)	-6.0
France,	2022-1b	Mean	81.2 (N=282)	78.2 (N=112)	-3.0
Biologie Prosp	2022-3a		82.8 (N=283)	81.2 (N=115)	-1.6
Wales,	M1011	Mean	79.6 (N=112)	77.9 (N=61)	-1.7
WEQAS	M1018		112.7 (N=111)	112.4 (N=63)	-0.3
Brasil,	459	Mean	89.8 (N=567)	82.5 (N=41)*	-7.3
PNCQ	458		119.4 (N=567)	114.5 (N=41)	-4.9
Austria,	250/C**	Mean	76.5 (N=195)	74.0 (N=103)	-2.5
OQUASTA	250/A**		107.0(N=225)	104.6 (N=116)	-2.4
UK,	1119/B	ALTM	95.8 N=525)	94.4 (N=288)	-1.4
UKNEQAS	1119/C		104.3(N=525)	103.5 (N=288)	-0.8
Australia,	22-13	Median	78 (N=558)	75 (N=56)	-3
RCPAQAP***	22-39		94 (N=557)	96 (N=55)	+2

Clin Chem Lab Med 2024; 62(6): 1158-1166

DE GRUYTER

Marith van Schrojenstein Lantman*, Remco Grobben, Antonius E. van Herwaarden, Miranda van Berkel, Jeroen Schaap and Marc Thelen

To rule-in, or not to falsely rule-out, that is the question: evaluation of hs-cTnT EQA performance in light of the ESC-2020 guideline

EQAL

Application of performance on real life patient results in a data simulation

CPS is <1%

A/OL ODI

1. Precision profile of fail and pass

- 2. Simulate alternative results 3300 patients
- 3. Check opportunity for other decision

			0/ 11/ 0		UZICUL		
intended decision	decision made	Δ	PASS	FAIL	Δ	PASS	FAIL
rule-in →	rule-out	6	0.0001%	2.1%	11	0%	0.01%
rule-in →	observe	6	6.7%	25.0%	11	7.8%	27.8%
observe→	rule-out	4	1.1%	10.4%	9	0%	0.28%
observe→	rule-in	4	28.0%	39.5%	9	29.7%	39.7%
observe→	rule-out	0'	1.8%	3.3%	0"	1.4%	3.4%
observe→	rule-in	0'	0.07%	6.5%	0"	0%	0.09%
rule-out →	observe	0'	1.7%	24.2%	0"	1.4%	13.7%
rule-out →	rule-in	0'	0%	3.4%	0"	0%	0.001%
' hs-cTnT(t0) <12 ng/L							

A/HL ODI

" hs-cTnT(t0) <14 ng/L

Misclassification due to

1. Analytical performance: imprecision

As long as PS does not meet APS Changing to 0/2h CDL can save the day

Clin Chem Lab Med 2024; 62(6): 1158-1166

DE GRUYTER

Marith van Schrojenstein Lantman*, Remco Grobben, Antonius E. van Herwaarden, Miranda van Berkel, Jeroen Schaap and Marc Thelen

- Rationale:
- If results are standardised

For equivalent decision making

- Decision limits need to be standardised
- Disclaimer: RI are only transferable if:
 - Patient groups are comparable, if not: multiple RI (not: one size fits none!)

false-decreas interpretation (low) Allow	vable bias (A	Ab) oncordar	nt Ri (c)			
discrepancy	false-elevated interpretation (high)					
₩ - bia:	• s +					
Method	n of labs	Abc	Ab	с	low	high
ideal method	6	100%	100%	100%	0%	0%
method A	5	20%	20%	100%	0%	0%
method B	5	0%	80%	0%	100%	0%
method C	8	12.5%	50%	12.5%	0%	87.5%
method D	9	33.3%	33.3%	55.9%	22.2%	22.2%

C	lin	i	cal	Che	emi	istry	00:0
1.	-1	0	(2)	024	1	-	

Clinical Decision-Making Suffers from Inequivalent Measurement Results and Inadequate Reference Intervals

Marith van Schrojenstein Lantman ,^{a,b,*} Miranda van Berkel,^b Philip Kuijper , Nannette Brouwer,^e and Marc Thelen^a

https://doi.org/10.1093/clinchem/hvae129

sim) Take home messages

- EQA with commutable samples can be used as proxy for analytical performance in clinical samples
- Data simulations can study the real life impact of AP from EQA
- Intended use matters
- The quality of your work matters