

Assessment and risk estimation of biotin interference in immunoassays

Serafeim Karathanos, Lia Moira, Efi Botoula and Alexander Haliassos.

ESEAP- Greek External Quality
Assessment Scheme, Athens, GR

https://www.eseap.gr/

Main interferences in immunoassays (I)

Anti-streptavidin antibodies,

Anti-ruthenium antibodies,

Anti-alkaline phoshatase antibodies,

Hook effect,

Cross-reaction,

Macro analytes,

Heterophile antibodies,

HAAA,

RF,

Gammopathies.

BIOTIN:

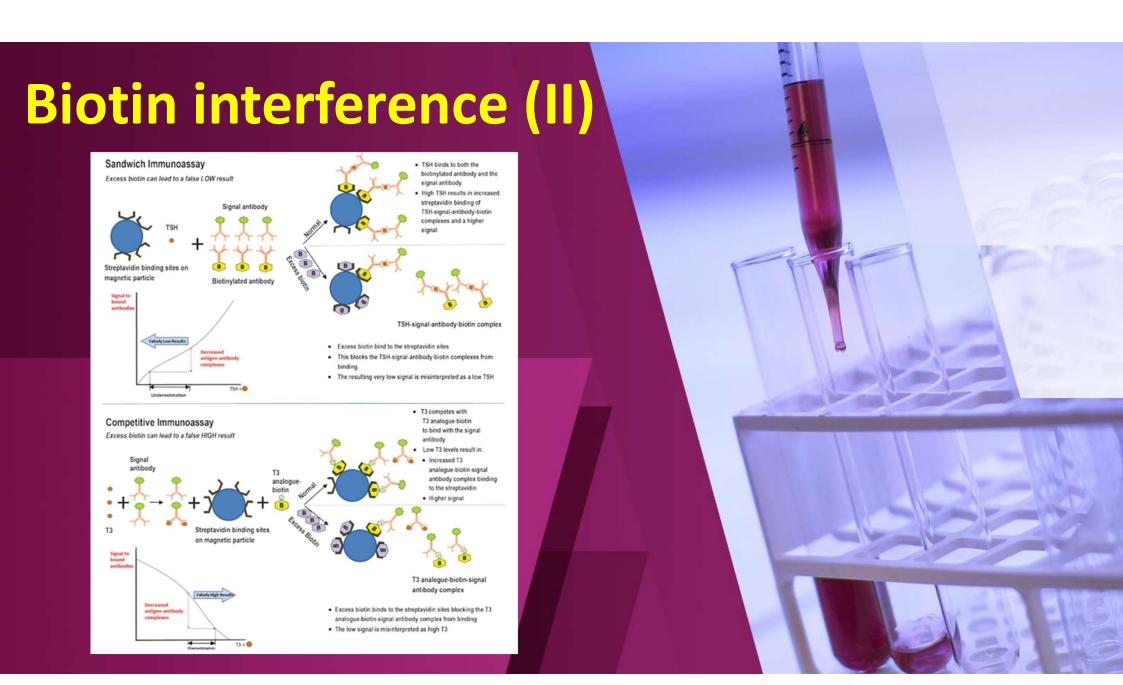
COMPETITIVE ↑

SANDWICH ↓

Main interferences in immunoassays (II)

INTERFERENCES BY	ERROR TYPE
Biotin	COMPETITIVE: 个
	SANDWICH: ↓
Anti-streptavidin,	
anti-ruthenium, anti-	COMPETITIVE:个
alkaline phoshatase	SANDWICH:个
antibodies	
Hook effect	\downarrow
Cross-reaction	COMPETITIVE: 个
	SANDWICH: ↑OR↓
Macro analyte	\uparrow
Heterophile antibodies,	MOSTLY ↑
HAAA, RF	↓ POSSIBLE
Gammopathy	个 but also
	↓ POSSIBLE

Biotin interference (I)


Among the most important interferences is that of biotin.

A common, usually *uncontrolled*, dietary supplement.

Excess use of biotin, mainly in nutritional supplements, creates a significant problem in laboratory results as in the majority of immunoassays the biotin-streptavidin complex is used.

The most serious incident of interference is that of the death of a patient in the ER, with symptoms of an acute myocardial infarction, from a falsely low troponin.

Methods

We used:

- Inserts from manufacturers,
- Bibliographic search of articles related to interferences in immunoassays,
- Communication and discussion with scientific specialists of IVD manufacturers,

in order to review the main interferences and detect automated immunoassay systems that are still affected by exogenous biotin.

Results

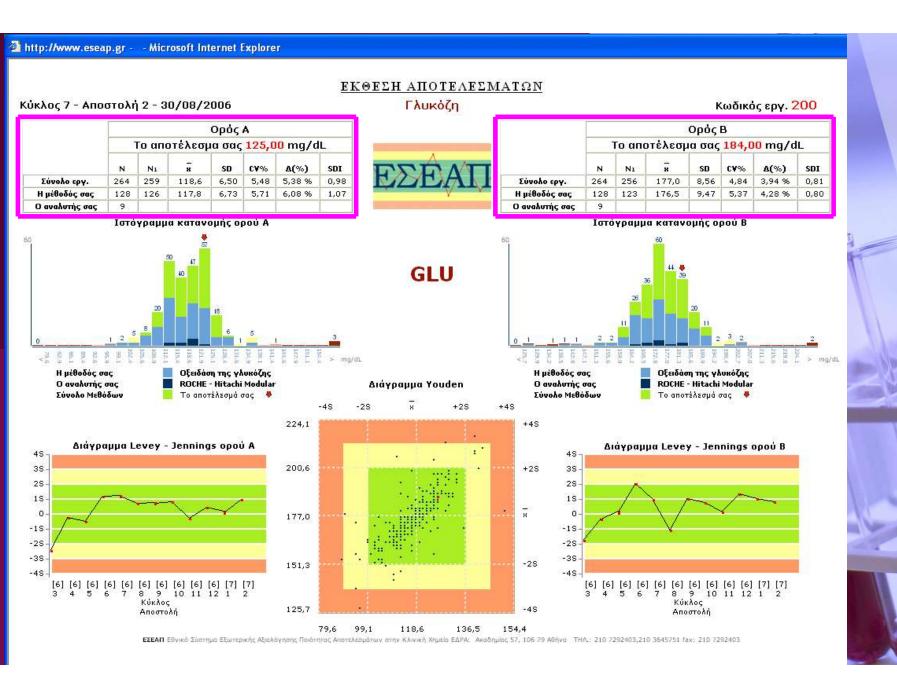
Platform	ıs	Percentage of vulnerability to biotin interference TODAY (mid 2022)								
Siemens	Centaur	20%								
	Atellica	20%								
Beckman Coulter (but with increased	Access	9%								
biotin threshold)	Dx1800	9%								
Abbott	Architect	0%								
	Alinity	0%								
Roche (but with increas threshold		100%								
Tosoh (all current	platforms)	0%								
SNIBE (all plat	forms)	1,2%								

Conclusions

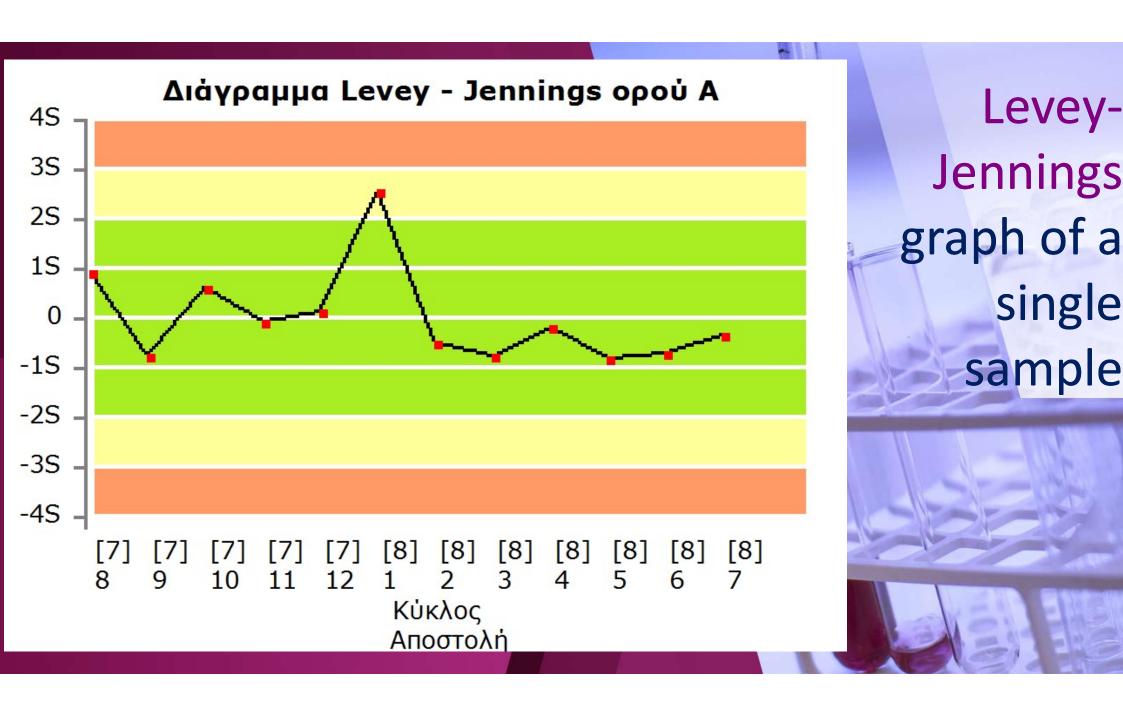
There is an increased number of reports related to biotin interference and visible efforts by IVD manufacturers to avoid it.

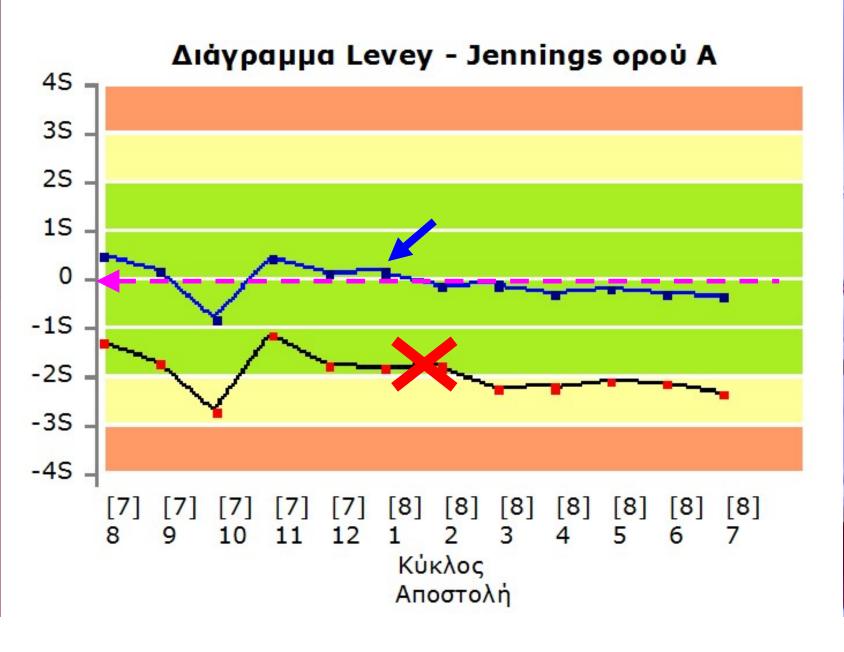
- Abbott's ARCHITECT & Alinity analyzers and all Tosoh and almost all SNIBE current assays are immune to biotin interference
- Access 2 and DxI 800 analyzers of Beckman Coulter have only 6 parameters measured with biotin-streptavidin assays (threshold >10mg/day).
- Siemens Centaur & Atellica analyzers: the percentage of vulnerability is about 20%
- Roche it is vulnerable 100% but with low sensitivity to biotin.

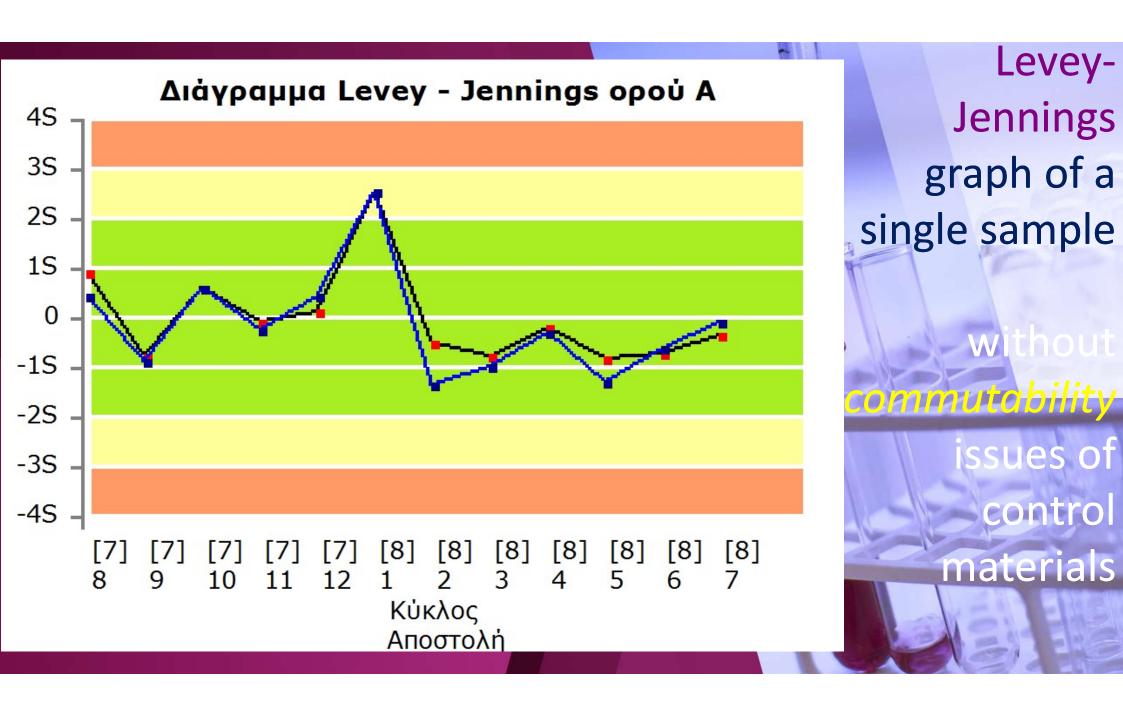
Εθνικό Σύστημα Εξωτερικής Αξιολόγησης Ποιότητας

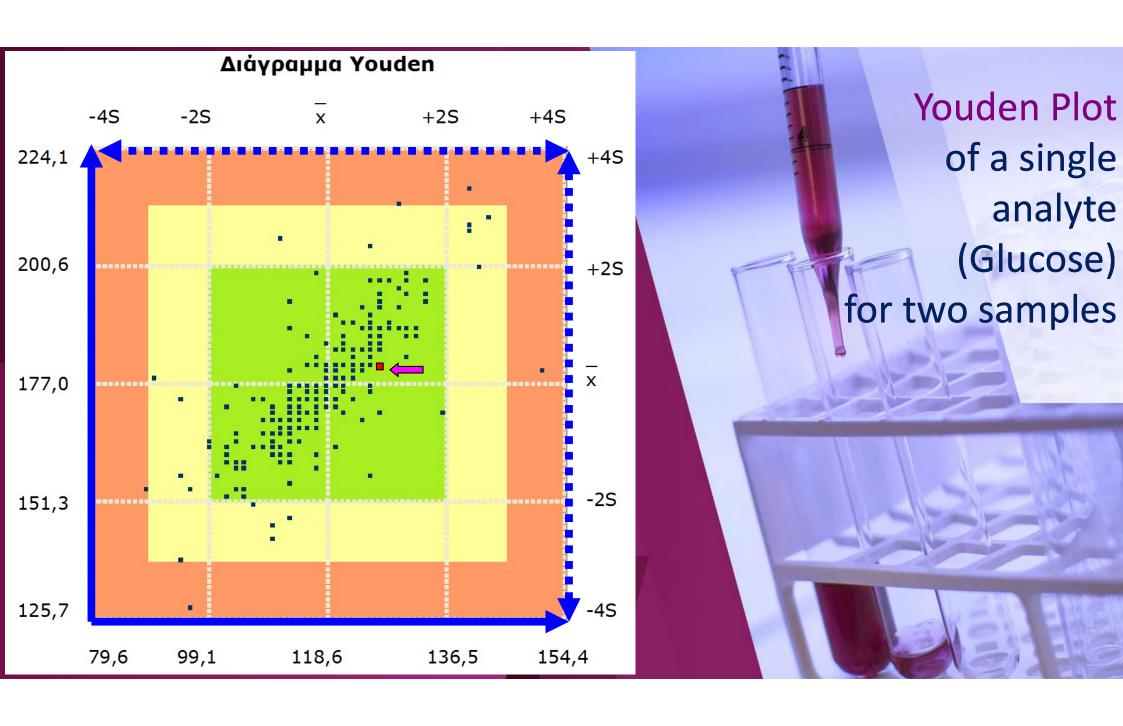

National System of External Quality Assessment

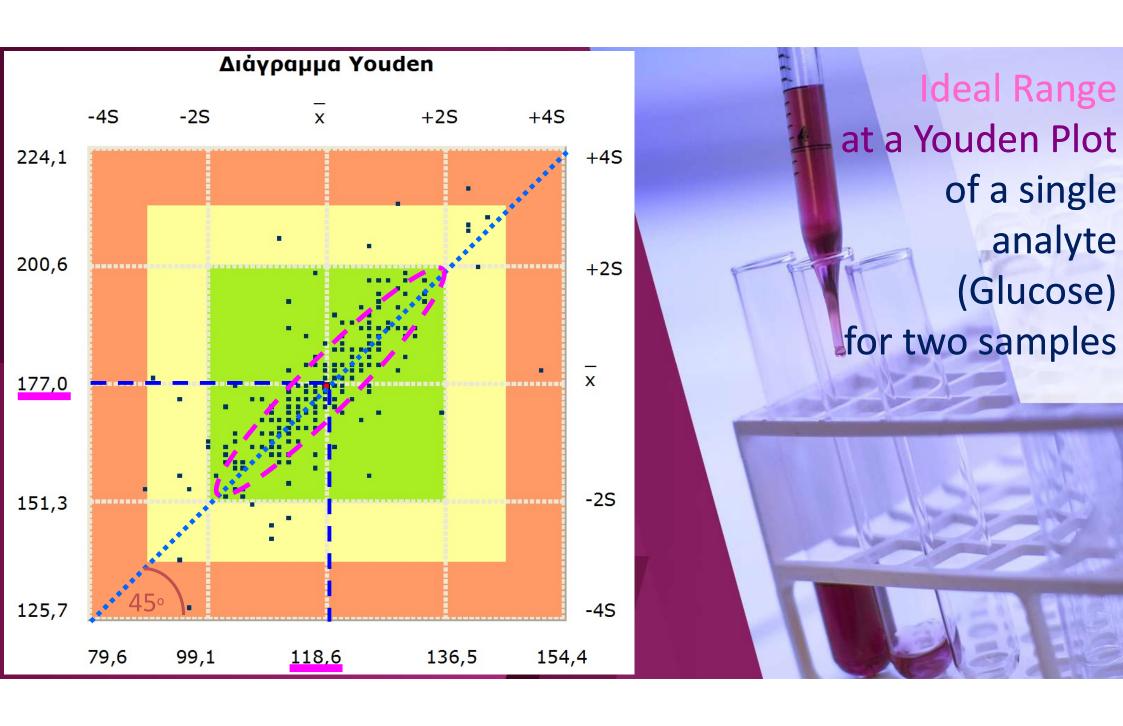
Proficiency Testing Scheme for Clinical Laboratories

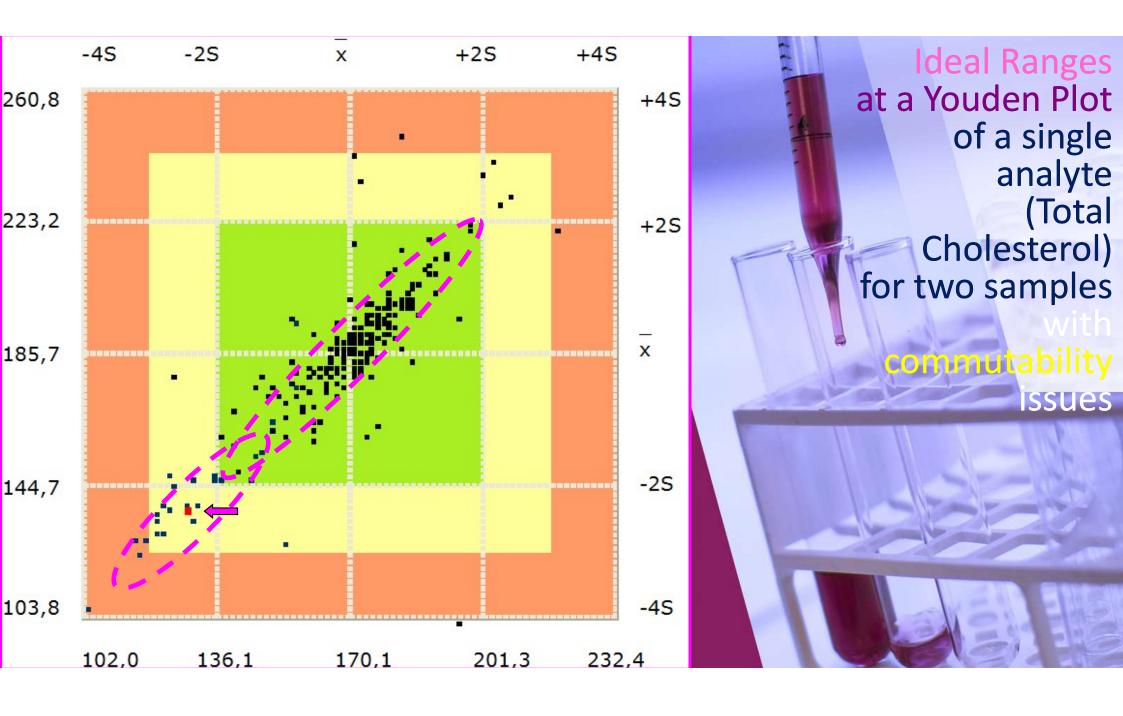

https://www.eseap.gr/


Start of operation: June 1994




Results Report of a single analyte (Glucose)





Levey-**Jennings** graph of a single sample

Evaluation of Laboratories

Παράμετρος	1ŋ	2η	3η	4η	5η	6η	7η	8η	9η	10η	11η	12η	м.о	Κατάταξη
[GLU] Γλυκόζη	9	9	9	6	9	10	8	6	10	10	10	8	0,67	15/266
[UREA] Oupia	10	10	10	9	8	8	10	6	10	6	9	9	8,75	14/266
[CREA] Κρεατινίνη	9	10	8	9	9	9	8	9	9	9	8	9	0,03	10/200
[Na+] Νάτριο	9	10	8	5	-	-	-	-	-	-	-	-	8,00	2
[Κ+] Κάλιο	10	9	9	9	9	9	8	9	10	7	10	10	9,08	2/239
[T.PROT] Ολικά Λευκώματα	9	9	10	8	8	10	9	9	10	9	10	9	9,17	4/260
[ALB] Αλβουμίνη	9	8	8	10	9	10	10	10	10	10	9	10	9,42	2/260
[CHOL] Χοληστερόλη	10	10	10	10	10	8	9	9	9	9	10	9	9,42	5/266
[HDL] HDL-Χοληστερόλη	9	10	9	9	9	4	-	-	-	=	150	=	8,33	-
[TRIG] Τριγλυκερίδια	8	10	8	9	10	9	9	9	9	9	8	9	8,92	7/265
[URAC] Ουρικό οξύ	-	8	10	9	9	10	10	10	9	9	9	9	9,27	6/266
[ΤΒΙL] Χολερυθρίνη ολική	8	9	3	2	_	2	-	_	-	_	-	ž.	6,67	<u>u</u>
[Ca] Ασβέστιο	9	8	8	9	9	8	6	-	-	-		-	8,14	-
[Ρ] Φωσφόρος	9	10	8	10	10	9	10	8	10	8	10	10	9,33	2/246
[Mg] Μαγνήσιο	10	9	8	5	-	-	-	-	-	-	-	-	8,00	-
[Fe] Σίδηρος	10	10	9	10	10	10	10	9	10	10	10	10	9,83	1/244
[AST] (SGOT)	9	9	7	10	10	10	8	10	9	8	1-1	-	9,00	6/266
[ALT] (SGPT)	10	10	8	9	10	9	10	10	9	4	-	-	8,90	18/267
[ALP] Αλκαλική Φωσφατάση	9	10	9	8	-	-	-	-	-	-		-	9,00	-
[GGT] γ-GT	10	10	10	9	10	10	10	9	10	9	8	9	9,50	8/266
[LDH] LDH	9	9	10	10	9	9	8	9	9	7	-	-	8,90	9/251
[CK] CK	9	8	9	9	10	9	9	10	10	4	-	_	8,70	11/257
[ΑΜΥ] Αμυλάση	9	10	10	9	9	9	4	-	727	-	-	-	8.57	_
Μέσος Όρος (Μ.Ο.)	9,23	9,35	8,61	8,68	9,32	8,95	8,67	8,88	9,56	8,00	9,25	9,25	8,80	8/267

Proficiency Testing Schemes (1)

- 1) Clinical Chemistry (Monthly and/or Bimonthly) from 1994
 Glucose, Urea, Creatinine, Sodium, Potassium, Chloride, Total Protein,
 Albumin, Cholesterol, HDL-cholesterol, Triglycerides, Urate, Bilirubin, Direct
 Bilirubin, Calcium, Phosphate, Magnesium, Iron, AST/ ALT, ALP, γGT, LDH, CK,
 Amylase
- 2) Hemoglobin A1C (HbA1c) (twice per month) from 2007 in cooperation with EuroRefLab
- 3) Cardiac Markers and hs-CRP from 2008
 CK, CK-MB mass, CK-MB activity, Troponin-T, Troponin-I, high sensitivity CRP
 (hs-CRP), BNP, pro-BNP
- 4) TDM (Therapeutic Drug Monitoring) from 2011.

 Digoxin, Phenytoin, Valproate, Phenobarbital, Vancomycin, Acetylsalicylic acid, Paracetamol, Methotrexate
- 5) Coagulation Factors from 2013.

 Prothrombin Time (PT), Prothrombin Time INR, Partial Thromboplastin Time (PTT), Antithrombin III(AT III), Fibrinogen
- **6)** Thyroid Hormones from 2010 TSH, FT3, FT4, T3, T4, Anti-TPO, Anti-TG, Thyroglobulin

Proficiency Testing Schemes (2)

7) Reproductive Hormones & Anemia Markers from 2012

FSH, LH, Oestradiol (E2), Progesterone, Prolactin, Testosterone, Human Chorionic Gonadotropin (HCG), Alpha-fetoprotein (AFP), Cortisol, Ferritin, Vitamin B12, Folic Acid, Transferrin

8) Tumor Markers from 2012

PSA, Free PSA, CEA (Carcinoembryonic antigen), Alpha-fetoprotein (AFP), CA 125, CA 15-3, CA 19-9, β2-microglobulin, TMAB

9) Specific Proteins from 2015

ASTO, CRP, Rheumatoid factor(RF), Transferrin, Quantitative measurement of immunoglobulins (IgG, IgA, IgM, IgE), Complement components (C3, C4), Ferritin, Vitamin B12, Folic Acid

10) Immunology (2 schemes):

- Systemic autoantibodies (single donor special sample from): Antinuclear antibodies (ANA), Anti-mitochondrial antibodies (AMA), Anti-dsDNA antibodies, Anti-ENA antibodies (SS-A, SS-B, RNP, Sm), Anti–Scl-70 antibodies (Scl-70), Anti–Jo1 antibodies, Antibodies against Beta-2-Glycoprotein I (β2GPI) IgG & IgM and Cardiolipin antibodies (αCL) IgG & IgM
- Quantitative immunological parameters (sample of immunochemical parameters): Anti-TPO, Anti-TG, Quantitative measurement of immunoglobulins (IgG, IgA, IgM, IgE), Complement components (C3, C4) and Reumatoid Factor (RF)

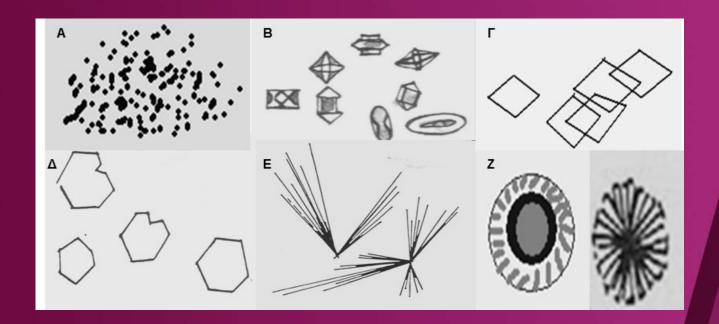
Proficiency Testing Schemes (3)

11) Viral Markers I (TORCH) from 2017:

Toxoplasma antibodies IgG & IgM, Cytomegalovirus antibodies IgG & IgM, Rubella antibodies IgG & IgM and HSV 1 & 2 antibodies IgG & IgM

12) Viral Markers II - STDs in cooperation with EuroRefLab from 2017

Australian antigen (HBsAg), Anti-HBc antibodies, Anti-HBs antibodies, anti-HCV antibodies, anti-HIV & anti-HTLV antibodies, anti-Treponema pallidum antibodies


13) 25-hydroxyvitamin D (25OHD) in cooperation with DEQAS UK from 2015

14) Combined Clinical Chemistry (Glucose, Urea, Creatinine, Sodium, Potassium, Chloride, Total Protein, Albumin, Cholesterol, HDL-cholesterol, Triglycerides, Urate, Bilirubin, Direct Bilirubin, Calcium, Phosphate, Magnesium, Iron, AST/ ALT, ALP, γGT, LDH, CK, Amylase) along with frequent Immunochemistries (CRP, Ferritin, Folic Acid, B12, FT3, FT4, TSH, PSA, β-HCG and Oestradiol (E2)) 12 samples per year and bimonthly analysis.

Urinalysis - Pilot scheme

Urinalysis:

Will include biochemical and microscopy evaluation, in a liquid sample ready for use. Two Samples, Bimonthly analysis.

Thank you

for your attention!!!

Questions?...

