MULTISITE EVALUATION OF A NEW FIVE-PART DIFFERENTIAL CONTROL MATERIAL FOR HAEMATOLOGY

Lajos Fodor, Katalin Hetyésy, Erzsébet Fey, Zsuzsanna Kálmán and Éva Ajzner

> University Teaching Hospitals in Hungary

Introduction

Five-part differential control products are usually instrument specific with limited cross-applicability between different hematology analyser families.

Provisional target ranges of D-check 5 diff

(Science Innovation Unit, Diagon, Hungary)

on different haematology platforms

		LOW						
PA	RAMETER	Platform 1	Platform 2	Platform 3	Platform 4			
WBC	10 ³ /μL & 10 ⁹ /L	3.1±0.5	3.2±0.5	3±1	3.1±1			
RBC	10 ⁶ /μL & 10 ¹² /L	2.58±0.18	2.66±0.18	2.6±0.15	2.64±0.15			
Hgb	g/L	78±4	76±4	76±4	75±4			
Hct	%	20.9±2.5	23.1±2.5	22 <u>+</u> 2.5	20.7±2.5			
PIt	$10^{3}/\mu$ L & $10^{9}/$ L	56+30	56+30	60+30	55+30			
NEUT%	%	33.8±10	33.2±10	37.7 <u>+</u> 12.4	37.8±12.4			
LYMPH%	%	40.6±12	48.4±12	47.7±17.9	50.2±17.9			
MONO%	%	17.2 <u>+</u> 15.8	14.7±11.7	12.3±12	2.6±2			
EO%	%	2.3±2	1±1	1.8±1	9.4±6			
BASO%	%	3.2±3	2.7±2	0.5±0.5	50±50			

Evaluate applicability of the tri-levelcontrol material -D-check 5 diff- in quality assessment of CBC and WBC differential parameters on different haematology platforms.

Methods

 four platforms (five labs ten analysers)

- Repeatability on each instrument with 10 within-run measurements.
- Reproducibility on 1 rep of each platforms.
- Imprecision of CBC and WBC differential parameters were calculated by
 - analysers
 - platforms
 - whole study basis

Platforms

one Advia 120

(Siemens) Flow+ leu <u>myeloperoxidase</u>

WBC diff: MPO 4part diff + basophil channel

four Cell Dyne 3700 (Abbott) electronic impedance with high-resolution flow cytometry

WBC diff: multi angle polarized scatter separation

Medium Angle Scatter (complexity)

three BC-5500 (Mindray)

WBC diff: multidimensional optical system and absorbance +basophil channel laser scatter technology combined with <u>chemical dye</u> <u>method</u> and flow cytometry

two XE-2100 (Sysmex)

<u>fluorescent</u> flow cytometry + adaptive Cluster Analysis System + basophil channel

Imprecision of CBC parameters of D-check on different haematology platforms

1. Advia 120 (1 site)

1.0

0.0

2. BC-5500 (3 sites)

60.0

55.0

50.0

4. XE-2100 (2 sites)

2.0

0.0

Reproducibility of CBC parameters

LOW		MEAN	SD	CV(%)	NORMAL	MEAN	SD	CV(%)	HIGH	MEAN	SD	CV[%]		
	RBC	T/L	2,76 2,61 2,46	2,62	0,03	1	5.00 4.50 4.00	4,41	0,14	3	6,00 5,25 4,50	5,73	0,12	2
	WBC	G/L	3,50 2,90 2,30	3,08	0,13	4	8,0 6,0	7,08	0,27	4	22,0 19,4 16,8	19,63	0,75	4
CBC	PLT	G/L	98,0 68,0 38,0	60	4	6	275 215 155	180	11	6	450 300	346	20	6
	HGB	g/L	80.0 75.0 70.0	77	1	2	150 135 120	138	2	2	200 175 150	190	3	2
	Hct	%	23,6 21,1 18,8	21,3	1,3	6	44.0 38.0 32.0	37,5	2,4	7	60,0 50,0 40,0	52,7	2,2	4

Imprecision of WBC differential parameters of D-check on different haematology platforms

4. XE-2100 (2 sites)

1. Advia 120 (1 site)

2. BC-5500 (3 sites)

3. CellDyn 3700 (4 sites)

80.0

60.0

40.0

20.0

0.0

Reproducibility of WBC-diff parameters

Repeatability of D-check on different haematology platforms

Recoveries of WBC, NEU, LYMP on different quality control materials

Conclusions

D-check three-level-control material

- low imprecision of CBC parameters and WBC differential
 - on 10 individual instruments in five laboratories representing
 4 haematology analyser platforms.
 - on 4 WBC differential platforms
- Main WBC populations -neutrophil and lymphocyte fractions- of D-check could be measured within very similar target ranges by four different haematology analyser platforms.
- Based on these findings the control material worth further testing for its suitability as a control material in external quality assessment schemes.

Laboratories invited to participate in pilot EQA study

Interim report of EQA pilot

Response rate until today 65%

38 laboratories with any of the 4 platforms

Advia 2120	6
Advia 120	2
BC-5500	8
CellDyn3700	4
XT 1800i	7
XE 2100	5
XS-1000i	2
XT, XE 2000i	2
XE 5000	1
XT XE 4000i	1

		LC	W		NORMAL				
	Platform 1* Platform 2 Platfo		Platform 3	Platform 4**	Platform 1 Platform 2		Platform 3	Platform 4	
n	8	8	4	18	8	8	4	18	
НВ	3%	4%	3%	2%	4%	5%	2%	2%	
RBC	5%	2%	2%	3%	3%	3%	2%	2%	
MCV	4%	3%	3%	4%	5%	2%	2%	3%	
HTC	7%	2%	4%	5%	6%	2%	2%	5%	
WBC	7%	3%	5%	4%	5%	3%	5%	3%	
PLT	12%	7%	8%	24%	13%	10%	13%	10%	
NEU%	22%	6%	2%	13%	8%	2%	1%	10%	
LYMPH%	12%	1%	10%	6%	17%	3%	11%	16%	

* - 4 in WBC differential**- 5 in WBC differential

THANK YOU VERY MUCH FOR YOUR ATTENTION