
Biological Variation Working Group

Biological Variation Database, time for an update?

Dr Bill Bartlett Biological Variation Working Group EFLM Blood Sciences Dept. Ninewells Hospital, Dundee, Scotland UK www.biologicalvariation.com

Analytical Performance Specifications

Stockholm Hierarchy 1999 and EFLM Strategic conference 2014 advocate use of biological variation data.

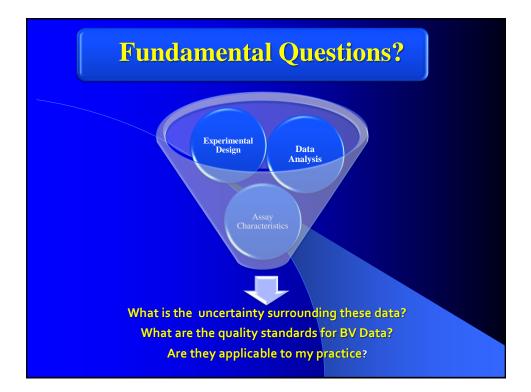
Understand and Characterise Biological variation and aim to: -

"minimize the ratio of 'analytical noise' to the biological signal"

Quality Specifications

Desirable
$CV_A < 0.5 \times CV_I$
$B_A < 0.25 x (CV_I^2 + CV_G^2)^{0.5}$
Tea < 1.65 x 0.5 x CV_I + 0.25 x $(CV_I^2 + CV_G^2)^{0.5}$
Optimum
$CV_A < 0.25 \ x \ CV_I$
$B_A < 0.125 \ge (CV_I^2 + CVG^2)^{0.5}$
Tea < 1.65 x 0.5 x CV_I + 0.125 x $(CV_I^2 + CV_G^2)^{0.5}$
Minimum
$CV_A < 0.75 \ x \ CV_I$
$B_A < 0.375 \text{ x} (CV_I^2 + CVG^2)^{0.5}$
Tea < 1.65 x 0.5 x CV_I + 0.375 x $(CV_I^2 + CV_G^2)^{0.5}$

Consensus Statement EFLM Strategic Conference Milan 2014. Sandberg et al Clin Chem Lab Med 2015;53(6):833-5


"There are limitations to this approach, including the need to carefully assess the relevance and validity of the biological variation data....."

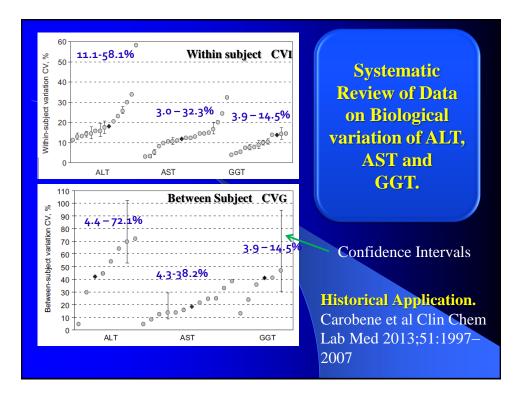
Challenge to users of BV data?

Identification of data that are: -

- robust.
- have characteristics that are concordant with the population to which the measurement procedure is to be applied.
- method specific?

NB! These data are <u>reference data</u> and are often poorly characterised

	Ricos e						
W	estgard QC		۶				
W		• •	P ic Variation	Minimu	um Specific	cation	
W	estgard QC	• •	ic Variation	Minimu CV(%)	um Specific Bias (%)	cation TE _a	
W s-		Biolog					Median Values o
	Analyte	Biolog CV ₁	CVg	CV(%)	Bias (%)	TEa	
S-	Analyte α1-Antitrypsin	Biolog CV ₁ 5.9	CVg	CV(%)	Bias (%)	TEa	Median Values o Published Data
S- P-	Analyte α1-Antitrypsin α2-Antiplasmin	Biolog CV ₁ 5.9 6.2	CV _G 16.3	CV(%) 4.7	Bias (%) 6.5 	TEa 13.8 	
S- P- S-	Analyte α1-Antitrypsin α2-Antiplasmin α2-Macroglobulin	Biolog CV1 5.9 6.2 3.4	CV _G 16.3 18.7	CV(%) 4.7 2.6	Bias (%) 6.5 7.1	TE _a 13.8 11.3	
S- P- S- S-	Analyte α1-Antitrypsin α2-Antiplasmin α2-Macroglobulin α-Amylase	Biolog CV1 5.9 6.2 3.4 8.7	CV _G 16.3 18.7 28.3	CV(%) 4.7 2.6 6.5	Bias (%) 6.5 7.1 11.1	TE _a 13.8 11.3 21.9	

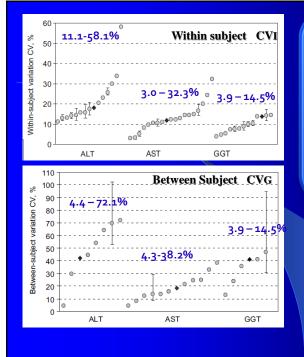

Biological variation database: structure and criteria used for generation and update. Perich et al Clin Chem Lab Med 2014

Version 8 2014

	No of Analytes	Number of Publications	Reliable estimates of CV _I	Score
	27	10+	33%	5 or 6 (PI +MM)
	129	2 - 9	36%	PI+2 MM= 3 or 4
	202	1 only	55%	5 or 6 (PI +MM)
Total	358			

Performance Index: PI = CVA/0.5*CVI, i) Score 2: PI < 1; ii) Score 1: PI between 1 and 2; iii) Score 0: PI > 2 or unknown.

Mathematical model (MM) used by the authors to calculate CVI and CVG: i) Score 4: ANOVA; ii) Score 3: model described by Fraser and Harris [1, 9]; iii) Score 2: unclear model; iv) Score 1: not described model.


Confidence Intervals and Power Calculations for Within-Person Biological Variation: Effect of Analytical Imprecision, Number of Replicates, Number of Samples, and Number of Individuals

Thomas Røraas, Per H. Petersen, and Sverre Sandberg

Clinical Chemistry 58:91306–1313 (2012)

- design of an experiment to estimate biological variation should take into account the analytical imprecision.
- Estimates of biological variation should always be reported with confidence intervals (CIs)

What are the potential impacts of variation in the BV data?

Systematic Review of Data on Biological variation of ALT, AST and GGT.

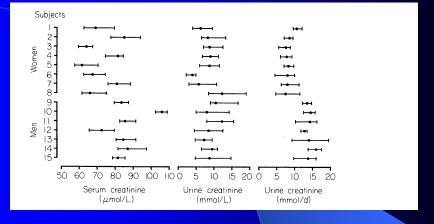
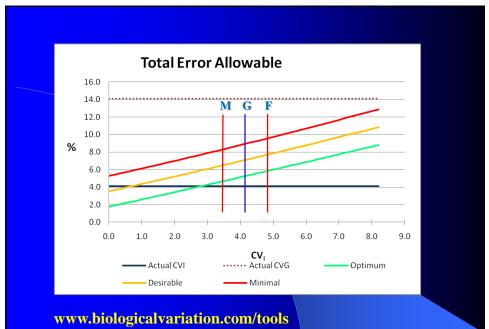

Historical Application. Carobene et al Clin Chem Lab Med 2013;51:1997– 2007 Derived quality specifications and derived indices at the maximum and minimum values of withinsubject BV published for ALT, AST and GGT and in Ricos et al. database (shaded area)

Table 4 Derived quality specifications and derived indices at the maximum and minimum values of within-subject BV published for ALT, AST and GGT (Tables 1–3) and in Ricos et al. database (shaded area) [6].

	Bio	ological variation, %		Derived qu	ality specifications	Significance of change, RCV, %		
	Within-subject	Between-subject	Imprecision ^b	Bias	Allowable error ^d	Pro	bability level	
	CV	CV _b	CV _{aqs}	B _A	TEA	0.05	0.01	
ALT	11.0	16.9°	5.5	5.2	14.3	34.8	45.8	
	18.0	42.0	9.0	11.4	26.3	51.1	67.3	
AST	58.0 3.0	72.0 4.3	29.0 1.5	23.1 1.3	71.0 3.8	161.1 13.9	212.1 18.2	
	11.9	16.9	6.0	5.4	15.2	34.8	45.8	
GGT	32.0 3.9	38.0 23.8	16.0 2.0	12.4 5.8	38.8 9.0	89.4 15.5	117.7 20.4	
	13.8	14.1	6.9	5.4	16.8	34.8	45.8	
	14.5	41.0	7.3	10.9	22.9	41.7	54.9	


Desirable quality specification for analytical imprecision (CV_{aq}) calculated as half the within-subject variation; Desirable quality specification for analytical bias, $B_{a}=0.25(CV_{2}+CV_{2})^{1/2}$; Desirable quality specification for total allowable error, $TE_{a}=B_{a}+1.65$ CV_{aq} ; No CV_{a} reported in the same study of minimum CV_{w} value, therefore CV_{a} as quoted on the Ricos et al. database was used. CV_{a} was set at 4.0% in all cases to enable comparison.

Biological Variation Serum Creatinine: Average within subject (CVI) = 4.1% Gowans & Fraser. Ann Clin Biochem 1988:25:259-263

			RCV				Number of Samples to predict set point	
V _I (CVA	0.95	0.99	B _A	Tea	5%	10%
-	_							
.4	6.8	1.5	10.3	13.6	1.9	4.7	2	1
<u>.9 1</u>	11.8	1.5	14.2	18.7	3.2	7.2	4	1
.1 1	14.1	1.5	12.1	15.9	3.7	7.1	3	1
			45.0				_	
.3 1	14.2	1.5	15.3	20.1	3.8	8.2	5	1
.7 1			13.7		3.8	7.7		
	.4 .9 .1	.4 .9 .1 .1 .1 .1 .1	.4 6.8 1.5 .9 11.8 1.5 .1 14.1 1.5 .3 14.2 1.5	VI CV _G CV _A 0.95 .4 6.8 1.5 10.3 .9 11.8 1.5 14.2 .1 14.1 1.5 12.1 .3 14.2 1.5 15.3	.4 6.8 1.5 10.3 13.6 .9 11.8 1.5 14.2 18.7 .1 14.1 1.5 12.1 15.9 .3 14.2 1.5 15.3 20.1	VI CV _G CV _A 0.95 0.99 B _A .4 6.8 1.5 10.3 13.6 1.9 .1 14.1 1.5 12.1 15.9 3.7 .3 14.2 1.5 15.3 20.1 3.8	VI CV _G CV _A 0.95 0.99 B _A Te _a .4 6.8 1.5 10.3 13.6 1.9 4.7 .9 11.8 1.5 12.1 18.7 3.7 7.1	RCV predict V1 CV _G CV _A 0.95 0.99 B _A Te _a 5% .4 6.8 1.5 10.3 13.6 1.9 4.7 2 .1 14.1 1.5 12.1 15.9 3.7 7.1 3

Biological Variation Data Simulation Package V3.2 Excel

Urinary Albumin Excretion.

Miller et al Clin Chem 2009;55:24-38

 CV_I 4% to 103% with central tertile 28% to 48% 40 studies with confounding factors: -

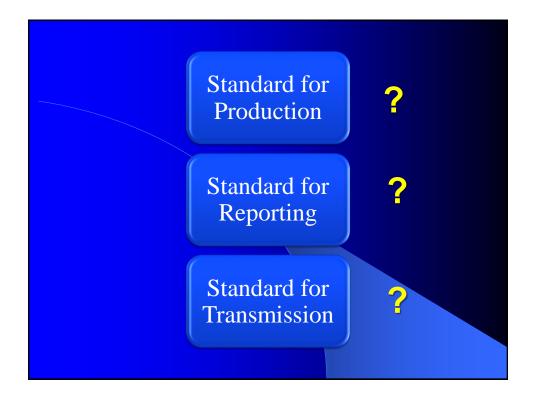
- Time period over which samples were collected
- Study design
- Type of sample and concentration range studied
- Population studied and state of health
- Preanalytical factors
- Poorly described statistical methods

Glycated Haemoglobin

Braga et al Clinica Chimica Acta 2010;411:1606-1610.

Highlights the need for a structured approach

"Nine recruited studies were limited by choice of analytic methodology, population selection, protocol application and statistical analysis"


Issues: -

- Heterogeneity in experimental model
- Length of study inappropriate (3 days to 6 months)
- Methods with differing specificities
- Statistical methods not specified

Within subject Biological variation in disease: collated data and clinical consequences.

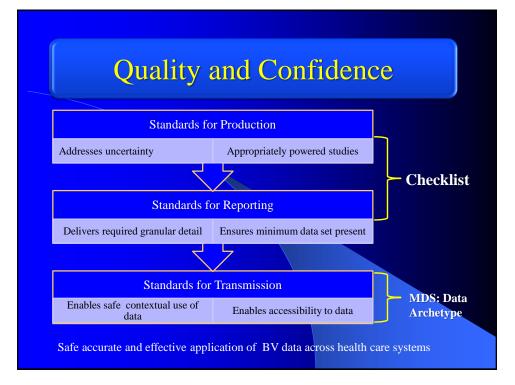
Ricos et al Ann Clin Biochem 2007:44:343-352

- 66 quantities 34 disease with 45 references.
- "For the majority of quantities studied CV_I of <u>same order</u> as diseased."
- <u>Disease specific RCVs</u> may be necessary in some cases.
- Effect of variability in variability not quantitatively studied.
- "Heterogeneity in study designs and methods compiled"

EFLM Biological Variation Working Group & Collaborators

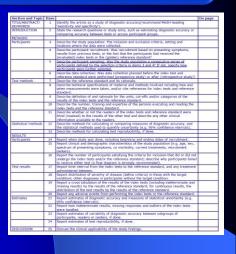
- Federica Braga
- Anna Carobene
- Abdurrhaman Coskun
- Niels Jonkers
- Irini Leimoni
- Richard Prusa
- Pilar Fernandez-Calle
- Thomas Røraas
- Sverre Sandberg

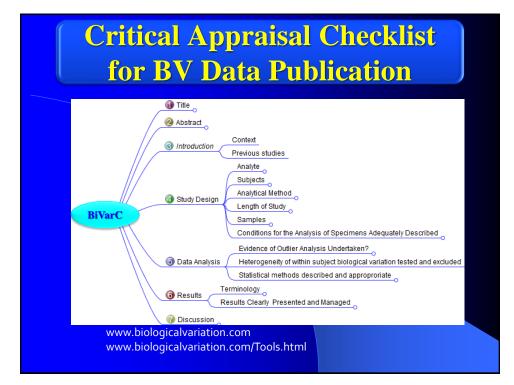
Biological Variation Working Group

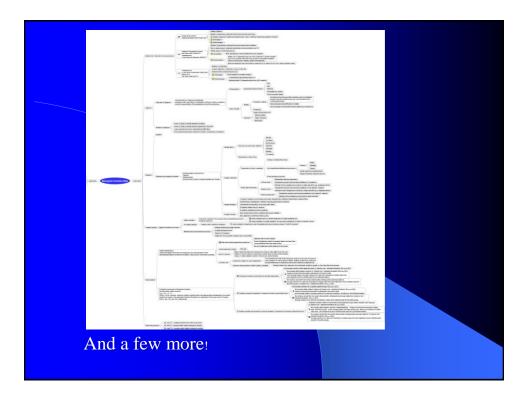

Critical Appraisal Checklist

A checklist for critical appraisal of studies of biological variation.

Bartlett WA, Braga F, Carobene A, Coşkun A, Prusa R, Fernandez-Calle P, Røraas T, Jonker N, Sandberg S; Biological Variation Working Group, European Federation of Clinical Chemistry and Laboratory Medicine (EFLM).


Clin Chem Lab Med. 2015;53(6):879-85.


Opinion Paper



STARD Statement STAndards for the Reporting of Diagnostic accuracy studies

 The objective of the STARD initiative is to improve the accuracy and completeness of reporting of studies of diagnostic accuracy, to allow readers to assess the potential for bias in the study (internal validity) and to evaluate its generalisability (external validity).

making a strain		n Data Reporting C	-			
	Col venaito	in pass webbinning c				
Section and Topic	(MDS Domain		Section and	Item #		Т
	Mapping:		Topic	(MDS		
Title/ Abstract /keywords	1	The title should the biological variation		Domain		
		and the populati biological variati (e.g. LOINC[27])		Mapping:		
Abstract	1.1	As a role image of		A-F)*		
		clearly identify, 1 sample reatrix as	Methods	3	Described in enough detail to facilitate transportability of the	fi -
introduction	2	the duration of t study. Introduction sho	methods		derived data across populations and health care economies. The	
		study and cite as warfetten of the t			biological variation data produced are effectively reference data	
Methoda	3	terminology to 8 Described in and derived data act			and their applicability requires delivery of appropriately	
		biological variati and their applica			described metadata to enable their use as such.	
Analyte/	3.1 (A)	skewribed meter The described st	Analyte/	3.1 (A)	The described study should clearly identify the target analyte	
Measurand.	32(5)	end measurand/ terminology and The description	Measurand.	0.2 (0.9	and measurand/s. Where available internationally agreed	
		detailed enough satisfies data sa			terminology and codings should be utilised.	
Measurement Procedure	3.5 (A)	[21.22,23] A clear descripto form part of the	Subjects	3.2 (B)	The description of the subjects and population studied should be	
		appropriate refe Deviation from s			detailed enough to enable transportability of the biological	
		adaptations of p manufacturers of			variation data set. Minimum data set should be present	
Length of Study	24 (62	Standardisation			[21,22,23]	
Samples	3.5 (c)	Sampling protoc be adequately d	Measurement	3.3 (A)	A clear description of the analytical methodology used should	†
		and manufactured power to the sta Sampling conditi	Procedure.		form part of the metadata. This may be made available via an	nethod
		detail. Pro-analy shearfood.			appropriate reference or be presented within the publication.	f well being.
	20102	Recorded detail the study and the			Deviation from standard operating procedures, use of	
analysis of samples		analysed. Analyti sources of analyt [24]			adaptations of published methods, and deviation from	power of
Data Analysis	4	Data analysis tec study to identify			manufacturers recommended methods in the case of	atistical:
Outlier analysis	4.1 (0)	calculated and pa This examination			commercially available systems should be documented.	ty, confidenc
		excluded from th should be applies and reasons for t			Standardisation and traceability should be clearly identified.	
Heterogeneity of uniarce.	4.2 (0)	This examination within subject up	Length of Study	3.4 (C)	Length of the study periods should be clearly identified.	m.
		to determine an numbers of outli etern."	Samples	3.5 (C)	Sampling protocols that minimise pre-analytical variation should	cate the
Stathtical methods	4.3 (0)	Statistical metho for purpose and			be adequately described to enable transportability of the data	<u> </u>
described and appropriate Bassifts		normal distributi			and numbers of samples taken sufficient to deliver the required	
		defined metadat transportation of			power to the study.[25, 26]	
Terminology	5.3 (0)	economies. Terms and symbols sociation should			Sampling conditions and sample type should be described in	
Results clearly	5.2 (0)	ol/[13] Biological veriate			detail. Pre-analytical storage conditions of samples should be	
presented and managed		tobulated in a for unambiguously a			described.	
		transportability of the sta			Recorded details should include the beginning and end date of	
		biological variation	Conditions for	3.6 (C)	the study and timings of sampling. A description of conditions under which the samples were	ł
		The rotality sector analysis undertail If data are small	analysis of	3.0 (C)	analysed. Analytical protocols should be designed to minimise	
		be clearly charac	samples		sources of analytical variability (Optimal Conditions Precision).	
Discussion	6	The discussion of fectors that impo	Junpies		[24]	
		settings, Limitatio			[27]	

Minimum Data Set: BiVarC MDS

Domain	Area for	Attributes
	Application	
(A) 1	Checklist &	Target - analyte and measurand, sample matrix, method
	database	characteristics.
(B) 2	Checklist &	Population characteristics- demographics, state of well being,
	database	physical/physiological characteristics, medication.
(C) 3	Checklist &	Study Characteristics- study duration and design, power of
	database	study to detect BV indices, model assumptions, statistical
		approach.
(D) 4	Checklist &	Data Characteristics- indices of biological variability, confidence
	database	intervals, tests for model assumptions
(E) 5	For database	Publication Details- links to the original publication.
(F) 6	For database	Data rating- new concept to be developed to indicate the
		quality of the BV data against a set of key criteria.

New Database Development

- EFLM Task and Finish Group set up post the Milan EFLM Strategic Conference. Sverre Sandberg Chair.
- Includes
 - Biological variation working group members
 - Spanish Quality
 Commission (SEQC)
- Barcelona /Paris 2015

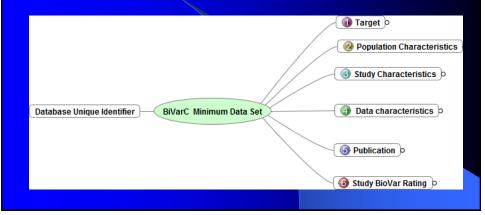
Building for the Future

• Pragmatic approach

- Use data already published and help users recognise limitations
- Identify the key areas for future work and inform the structure of the publication checklist.
- 14 questions identified and rating of A to D Classified on lowest rated with subscript identifying area of concern (C_{8 10})

Are the measurand and the measurement procedure documented?

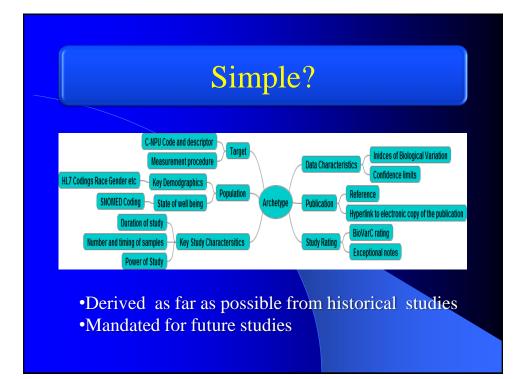
4)


i	Category A requires either
	(a) method described in detail.
	(b) reference to article where method is described in detail.
	(c) an identifiable method has been applied and is described with sufficient detail e.g. samples run on hexokinase method at Cobas 6000, Roche Diagnostics.
ii	If no/little information is given, category B, C or D depending on the amount of detail given and the measurand in question.
iii	If the method is considered no longer valid i.e. that current methods in practise estimate another measurand, category C or D depending on the consequences.

Archetype: definition?

A computable expression of a domain content model. Structured content to enable communication of key information

Minimum Data Set: BiVarC MDS


Definition of a Data Archetype required.

Provides granularity

– Enable drill down into detail

Use of standardised terminology and coding.

- Terminology Simundic et al Clinical Chemistry November 2014
- C-NPU, LOINC, SNOMED-CT

Summary

- Biological variation data are reference data.
- Existing databases are a valuable resource but need to be used with care
- A critical appraisal checklist has been developed to:
 - enable assessment of historical data
 - drive up quality of future publications
 - EFLM TFG hard at work to deliver a new database

Biological Variation Database, time for an update?

Yes!

Slides available next week:

www.biologicalvariation.com