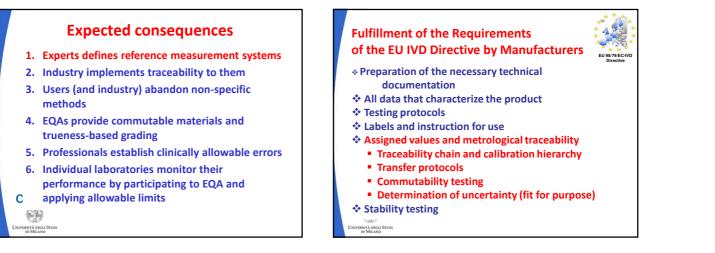


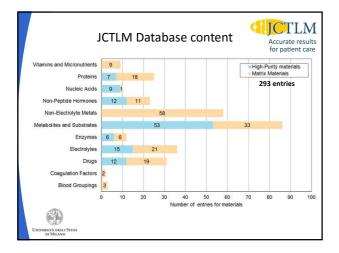
MANIFESTO "THE TRACEABILITY REVOLUTION MANIFESTO" MANIFESTO Data 1 A manufactor (C) Cold and a references
 Definition and approval of reference measurement systems, possibly in their entirety;
 Implementation by IVD industry of traceability to such reference systems in a scientifically sound and transparent way;
 Definition by the profession of the clinically acceptable measurement uncertainty for each of the analytes used in the clinical field;
 Adoption by EQA providers of commutable materials and use of an evaluation approach exclusively based on trueness;
 Monitoring of the analytical performance of individual laboratories by the participation in EQA that meet metrological criteria and application of clinically acceptable limits;
 Abandonment by users (and consequently by industry) of nonspecific methods and/or of assays with demonstrated insufficient quality.
649
UNIVERSITÀ DEGLI STUDI DI MILANO

Expected consequences

- 1. Experts defines reference measurement systems
- 2. Industry implements traceability to them
- 3. Users (and industry) abandon non-specific methods
- 4. EQAs provide commutable materials and trueness-based grading
- 5. Professionals establish clinically allowable errors
- 6. Individual laboratories monitor their performance by participating to EQA and ambring allowable limits

applying allowable limits

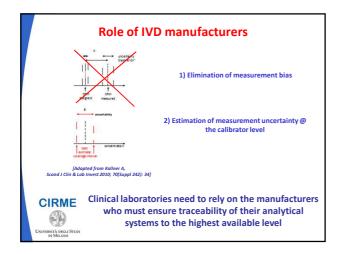

С

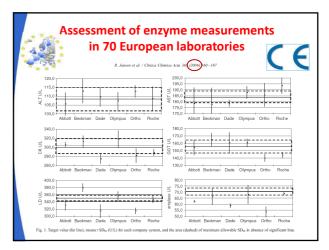

Adapted from Infusino I, Schumann G, Ceriotti F, Panteghini M. CCLM 2010;48:301

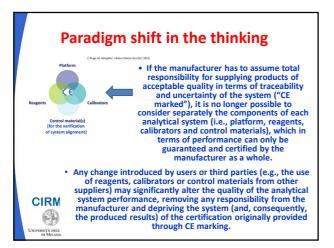
Expected consequences

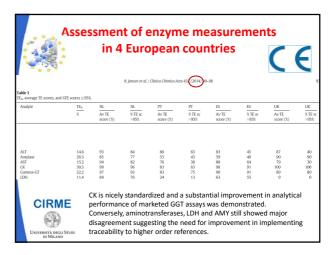
- 1. Experts defines reference measurement systems
- Industry implements traceability to them
 Users (and industry) abandon non-specific
- methods
- 4. EQAs provide commutable materials and trueness-based grading
- 5. Professionals establish clinically allowable errors
 6. Individual laboratories monitor their
- performance by participating to EQA and C applying allowable limits

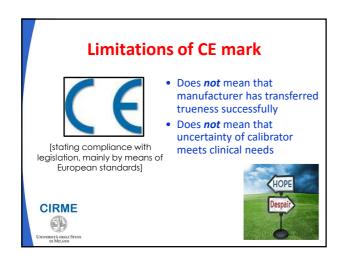
UNIVERSITÀ DECLI DI MILANO

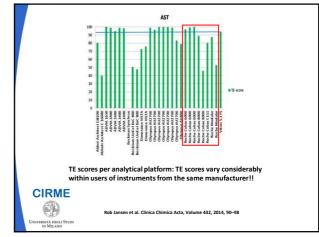

Role of IVD manufacturers

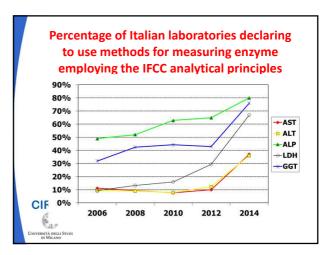

IVD manufacturers should define a calibration hierarchy to assign traceable values to their system calibrators and to fulfil during this process uncertainty limits, which represent a proportion of the uncertainty budget allowed for clinical laboratory results.




SITÀ DEGLI


[Braga F & Panteghini M, Clin Chim Acta 2014;432:55]





		by for	ir IVD comp	anies	÷
Company	Platform	Principle of method	Calibrator	Declared uncertainty	Higher-order reference employed
Abbott	Architect	with P-S-P	Calibration factor	NA	IFCC Reference Method
		without P-S-P	Calibration factor	NA	NADH molar extinction factor
Beckman	AU	with P-S-P	System calibrator	6%	IFCC Reference Method
		without P-5-P	System calibrator	NA	Beckman Coulter Master Calibrato
	Synchron	with P 5 P	Enzyme Validator Level 1	14.48%	IFCC Reference Method
			Enzyme Validator Level 2	7.53%	IFCC Reference Method
Roche	Cobas c	with P-S-P	C.f.a.s.	0.66%	IFCC Reference Method
		without P-5-P	C.f.a.s.	0.66%	IFCC Reference Method modified
	Integra	with P-S-P	C.f.a.s	1.50%	IFCC Reference Method
		without P-5-P	C.f.a.s	1.50%	IFCC Reference Method modified
	Modular	with P-S-P	C.f.a.s	1.09%	IFCC Reference Method
		without P-S-P	C.f.a.s	1.09%	IFCC Reference Method modified
		without P-5-P HiCo	C.f.a.s	1.09%	IFCC Reference Method modified
Siemens	Dimension Vista	with P-S-P	Enzyme II Calibrator Level 2	5.21%	IFCC Reference Method
			Enzyme II Calibrator Level 3	5.24%	IFCC Reference Method
	Advia	with P-S-P	Chemistry calibrator control 1	2.71%	IFCC Reference Method
			Chemistry calibrator control 2	2.40%	IFCC Reference Method
		without P-S-P	Chemistry calibrator control 1	2.50%	IFCC Reference Method
			Chemistry calibrator control 2	1.30%	IFCC Reference Method

Clinical Chemistry 63:7 1196-1198 (2017)

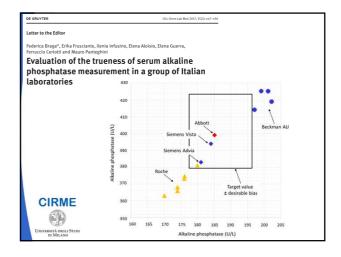
CIRME

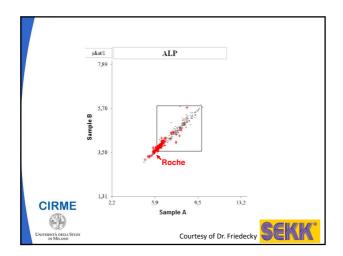
RSITÀ DEGLI SI DI MILANO Opinion

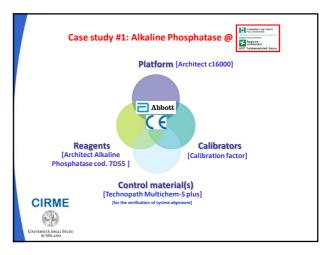
American Liver Guidelines and Cutoffs for "Normal" ALT: A Potential for Overdiagnosis

Mauro Panteghini, ^{1*} Khosrow Adeli,² Ferruccio Ceriotti,³ Sverre Sandberg,⁴ and Andrea Rita Horvath⁵

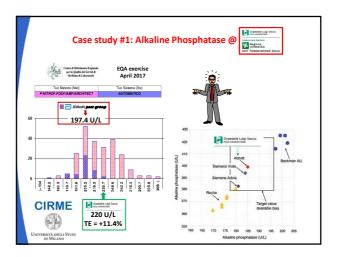
Despite the availability of a reference measurement system (RMS) for standardizing

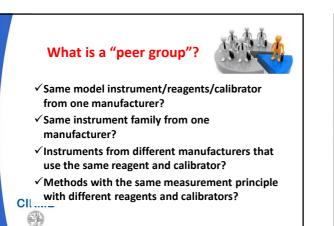

ALT results in clinical samples, the current evidence is, however, that ALT is still measured by methods that give quite differing values (3). Assay performance also varies considerably within users of instruments from the same manufacturer (4). This is mainly due to the use on the same platforms of various reagents with different analytical selectivity for ALT.

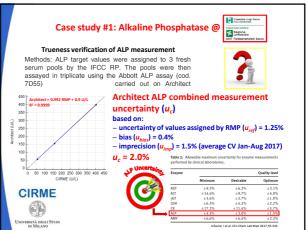

But, those who said to report enzyme results traceable to the IFCC RMPs, did they accurately recover the targets set by the reference laboratory?

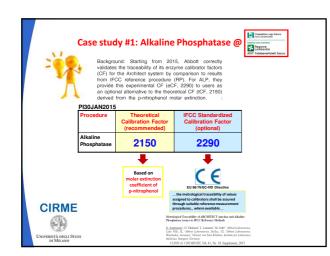


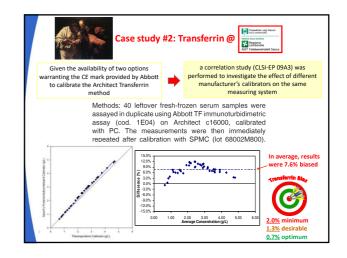
- Protessionals establish clinically allowable
 Individual laboratories monitor their
- performance by participating to EQA and C applying allowable limits

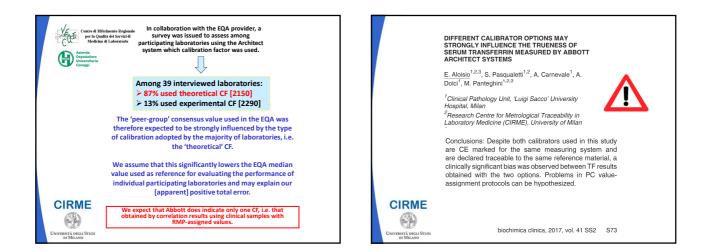

Ð

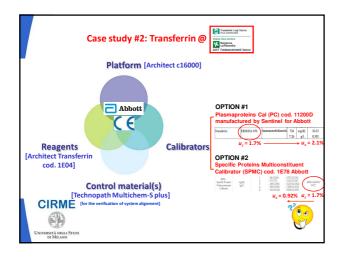


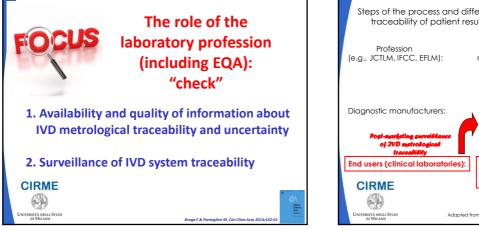


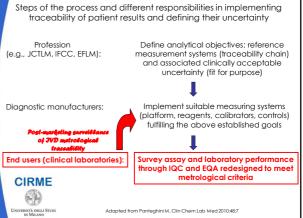

			IVD compa	inies	
Ditta	Plattaforma analítica	Principio del metodo	Calibratore	Incertezza tipo dichiarata ^a	Riferimento di ordine superiore utilizzato
Abbott	Architect	p-NPP	Fattore di calibrazione	ND	Procedura di riferimento IFCC (2011)
		p-NPP	Fattore di calibrazione	ND	Coefficiente di estinzione molare
Beckman	AU	IFCC (1983)	System calibrator	6,00%	Calibratore Master Beckman Coulter
		DEA	System calibrator	ND	Calibratore Master Beckman Coulter
	Synchron	AMP	Enzyme Validator Level 1	6,22%	Procedura di riferimento IFCC (2011)
			Enzyme Validator Level 2	1,86%	Procedura di riferimento IFCC (2011)
		AMP	Enzyme Validator Level 1	3,64%	Metodo standard DGKC
			Enzyme Validator Level 2	1,27%	Metodo standard DGKC
Roche	Cobas c	IFCC gen.2	Cf.a.s.	0,59%	Procedura di riferimento IFCC (1983)
	Integra	IFCC gen.2	Cfas	1,22%	Procedura di riferimento IFCC (1983)
	Modular	IFCC liquido	Cfas	1,65%	Procedura di riferimento IFCC (1983)
Siemens	Dimension Vista	AMP	ALPI calibrator	4,51% ^b	Procedura di riferimento IFCC (2011)
	Advia	AMP	Chemistry calibrator control 1	3,70%	Procedura di riferimento IFCC (2011)
			Chemistry calibrator control 2	1,00%4	Procedura di riferimento IFCC (2011)
		DEA	Chemistry calibrator control 1	1,40%	Coefficiente di estinzione molare
			Chemistry calibrator control 2	1,30%/	Coefficiente di estinzione molare
	ME		Braga F et al. Biochim Clir	n, Volume 41, 2017, 64–	1

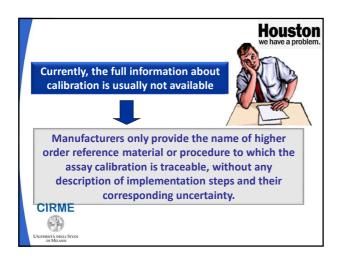


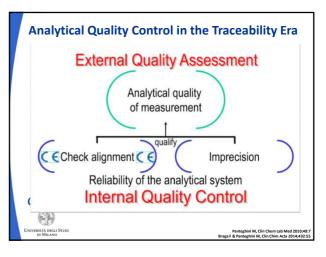


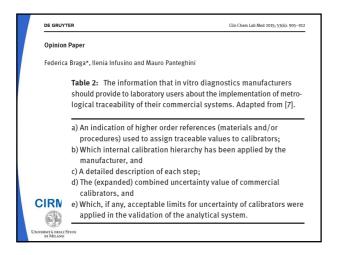

rsità degli S di Milano

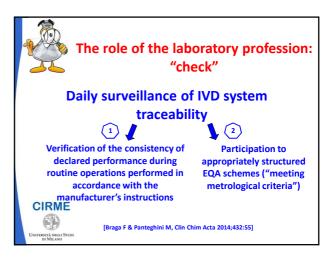












Expected consequences

- 1. Experts defines reference measurement systems
- 2. Industry implements traceability to them
- 3. Users (and industry) abandon non-specific methods
- 4. EQAs provide commutable materials and trueness-based grading
- 5. Professionals establish clinically allowable errors
- 6. Individual laboratories monitor their performance by participating to EQA and
- applying allowable limits

Ð rsità decli di Milano

(P) rsità degli Stud di Milano

С

Quality of EQA target - Concepts

- Analytically valid reference measurement procedure (ISO 15193)
- Competent reference laboratory (ISO 17025/ISO 15195 accreditation)
- → Joint Committee for Traceability in Laboratory Medicine listed

Accurate results for patient care

CIRME

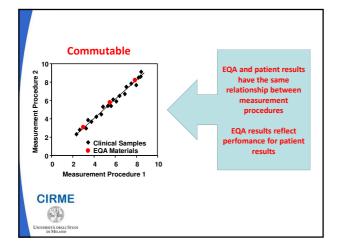
RSITÀ DEGLI ST

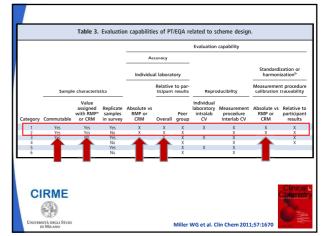
Quality of EQA target – Concepts

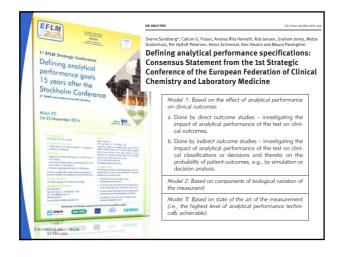
True value assignment to EQA materials allows objective evaluation of the performance of laboratory measurements through an trueness-based (instead of inferior consensus-based) grading of the competency of participating clinical laboratories. CIRME

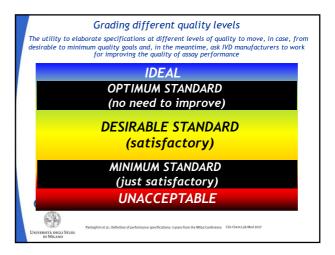
_			1 Database Status – June 2015 rence measurement services	;	Accurate results for patient care
			services listed credited for compliance with ISO 151	195/ISO 170	025 and 2 NMIs
Analyte Categories	Number of Services listed	Number of Analytes	Analytes	Number of Reference Laboratories	Country
Drugs	3	3	digitoxin, digoxin, theophylline	2	Germany
Electrolytes	15	6	Li, K, Na, Cl, Mg, Ca	4	Germany, United Kingdor
Enzymes	45	7	ALP, ALT, AST, CK, GGT, alpha-amylase, LDH	7	Germany, Italy, Spain, United Kingdom, China
Metabolites and Substrates	38	9	creatinine, glucose, cholesterol (total), glycerides (total), urea, uric acid, bilirubin, HDL- Cholesterol, LDL-Cholesterol	10	Belgium, France, German Italy, Japan, United Kingdom, China
Non-peptide Hormones	21	10	17 beta-estradiol, 17-hydroxyprogesterone, aldosterone, cortisol, estriol (non conjugated), progesterone, testosterone, free thyroxine, total thyroxine (TT4), total triiodothyronine (TT3)	4	Belgium, Germany, Unite Kingdom
Proteins	6	2	HbA1c, total protein	6	France, Germany, Italy, Japan, China
Vitamins	2	2	Hydroxyvitamins D2 & D3	1	Belgium
	130	39			

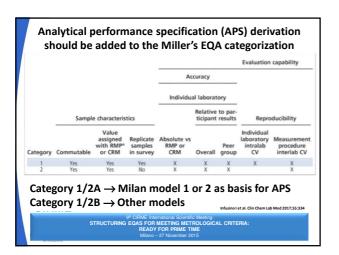

Quality of EQA target – Concepts

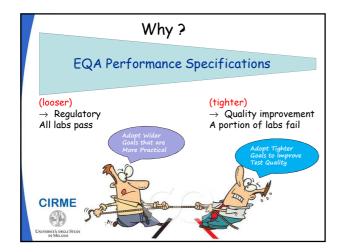

- To ensure reliability in the estimate of end user uncertainty alone, the uncertainty of the values assigned by the reference laboratory to EQA materials should be maintained at a minimum.
- To achieve this, Stöckl & Reinauer [Scan J Clin Lab Invest 1993;53(suppl 212):16] have proposed that the uncertainty of the target should be <0.2 times the EQA maximal tolerated limit.





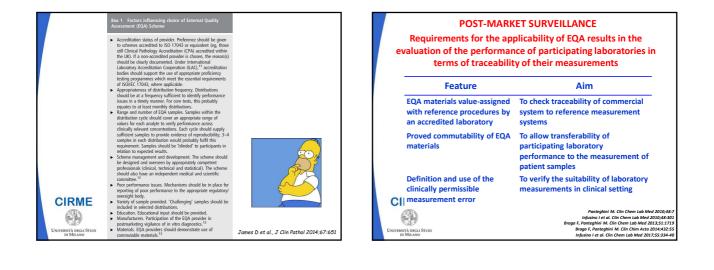


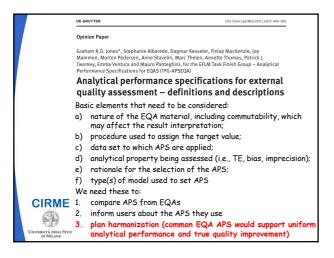


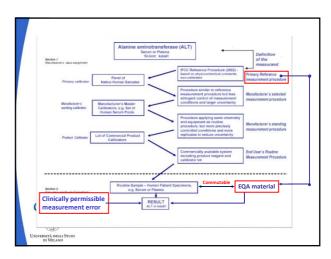


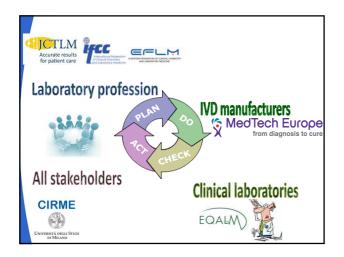
DE GRUYTER		Clin Chem Lab Med 2017; 55(2): 189-1
Opinion Paper		
Thomas Streichert, Joan-Ll	ernandez-Calle, George G. Klee, Gunna luis Vives-Corrons and Mauro Panteghi Allocation of laboratory tests to differen	ni, on behalf of the EFLM
Critoria for acc	signing laboratory mo	acurands to
models for an	alytical performance	cnocifications
inouels for and	atytical performance	specifications
defined in the	1st EFLM Strategic Co	onference
APS model 1: outcome-based	1st EFLM Strategic Co APS model 2: biological variation	APS model 3: state-of-the-a
APS model 1: outcome-based	APS model 2: biological variation	APS model 3: state-of-the-a
APS model 1: outcome-based P-Cholesterol+ester	APS model 2: biological variation P-Sodium ion	APS model 3: state-of-the-a U-Sodium ion
APS model 1: outcome-based P-Cholesterol+ester P-Cholesterol+ester in LDL	APS model 2: biological variation P-Sodium ion P-Potassium ion	APS model 3: state-of-the-a U-Sodium ion U-Potassium ion
APS model 1: outcome-based P-Cholesterol+ester P-Cholesterol+ester in LDL P-Cholesterol+ester in HDL	APS model 2: biological variation P-Sodium ion P-Potassium ion P-Chioride	APS model 3: state-of-the-a U-Sodium ion U-Potassium ion U-Chloride
APS model 1: outcome-based P-Cholesterol+ester P-Cholesterol+ester in LDL P-Cholesterol+ester in HDL P-figlycerides	APS model 2: biological variation P-Sodium Ion P-Potassium Ion P-Chloride P-Bicarbonate	APS model 3: state-of-the-a U-Sodium ion U-Potassium ion U-Chloride U-Calcium ion
APS model 1: outcome-based P-Cholesterol+ester P-Cholesterol-ester in LDL P-Cholesterol+ester in HDL P-Trigtycerides P-Glucose	APS model 2: biological variation P-Sodium ion P-Chaissium ion P-Chioride P-Glaitonate P-Glaitum ion	APS model 3: state-of-the-a U-Sodium ion U-Potassium ion U-Chloride U-Calcium ion U-Magnesium ion
APS model 1: outcome-based P-Cholesterol-ester P-Cholesterol-ester in LDL P-Triglycerides P-Glucose B-Hemoglobin A _{ic}	APS model 2: biological variation P-Sodium ion P-Potassium ion P-Bicarionate P-Bicarionate P-Calcium ion	APS model 3: state-of-the-a U-Sodium ion U-Potassium ion U-Chioride U-Calcium ion U-Magnesium ion U-Phosphate (Inorganic)
APS model 1: outcome-based P-Cholesterol+ester P-Cholesterol+ester in LDL P-Cholesterol+ester in HDL P-Triglycerides P-Glucose B-Hemogilobin A _{ic} P-Albumin	APS model 2: biological variation P-Sodium ion P-Chaissium ion P-Chaiforde P-Glaitum ion P-Magnesium ion P-Phosphate (inorganic)	APS model 3: state-of-the-a U-Sodium ion U-Chloride U-Calcium ion U-Magnesium ion U-Magnesium ion U-Phosphate (Inorganic) U-Creathinine
APS model 1: outcome-based P-Cholesterol+ester P-Cholesterol+ester in IDL P-Cholesterol+ester in HDL P-folicose B-femoglobin A _{1c} P-Ablumin P-Toponin T and P-troponin I	APS model 2: biological variation P-Sodium ion P-Protasslum ion P-Bicarbonzine P-Glicium ion P-Magnesium ion P-Magnesium ion P-Phosphate (inorganic) P-Cracitinie	APS model 3: state-of-the-a U-Sodium ion U-Chloride U-Calcium ion U-Magnesium ion U-Magnesium ion U-Phosphate (Inorganic) U-Creathinine
APS model 1: outcome-based P-Cholesterol-ester P-Cholesterol-ester in IDL P-Trigtycerides P-Flogtcore B-Hemoglobin A _L . P-Mbumin P-Troponin T and P-troponin I P-Troponin	APS model 2: biological variation P-Sodium ion P-Otassium ion P-Otassium ion P-Otastronate P-Catilum ion P-Phosphate (inorganic) P-Creatinine P-Creatinine	APS model 3: state-of-the-a U-Sodium ion U-Chloride U-Calcium ion U-Magnesium ion U-Magnesium ion U-Phosphate (Inorganic) U-Creathinine
APS model 1: outcome-based P.Cholesterol-ester P.Cholesterol-ester in IDL P.Cholesterol-ester in HDL P.Cholesterol-ester in HDL P.Cholesterol-ester in HDL P.Glucose B-Hemoglobin A _m P.Thypotropin B-Hemoglobin B-Hemoglobin	APS model 2: biological variation P-Sodium ion P-Polassium ion P-Claidium ion P-Magnesium ion P-Magnesium ion P-Phosphate (inorganic) P-Crystain C P-Crystain C	APS model 3: state-of-the-a U-Sodium ion U-Chloride U-Calcium ion U-Magnesium ion U-Magnesium ion U-Phosphate (Inorganic) U-Creathinine
APS model 1: outcome-based P-Cholesteroi-ester P-Cholesteroi-ester in IDL P-Cholesteroi-ester in IDL P-Triglycrides P-Folicose B-Hemoglobh A, P-Toponin I P-Toponin I B-Hemoglobh B-Hemoglobh B-Hatelets	APS model 2: biological variation P-Sodium ion P-Charssium ion P-Glastronate P-Glaitum ion P-Magnesium ion P-Phosphate (inorganic) P-Creatinine P-Crystain C P-Urate P-Proteins	APS model 3: state-of-the-a U-Sodium ion U-Chloride U-Calcium ion U-Magnesium ion U-Magnesium ion U-Phosphate (Inorganic) U-Creathinine
APS model 1: outcome-based P-Cholesteroi-ester P-Cholesteroi-ester in IDL P-Cholesteroi-ester in IDL P-Triglycrides P-Folicose B-Hemoglobh A, P-Toponin I P-Toponin I B-Hemoglobh B-Hemoglobh B-Hatelets	APS model 2: biological variation P-Sodium ion P-fotassium ion P-fotassium ion P-fotassium ion P-fotassium ion P-fotossium ion P-fotossium ion P-fotossium ion P-fotoss B-forthorcytes	APS model 3: state-of-the-a U-Sodium ion U-Chloride U-Calcium ion U-Magnesium ion U-Magnesium ion U-Phosphate (Inorganic) U-Creathinine
APS model 1: outcome-based P-Cholesteroi-ester P-Cholesteroi-ester in IDL P-Cholesteroi-ester in IDL P-Triglycrides P-Folicose B-Hemoglobh A, P-Toponin I P-Toponin I B-Hemoglobh B-Hemoglobh B-Hatelets	APS model 2: biological variation P-Sodium ion P-Otassium ion P-Otassium ion P-Gatium ion P-Magnesium ion P-Phosphate (inorganic) P-Creatinine P-Crystain C P-Crystain C P-Urate P-Proteins B-Erythrocyte solume fraction	APS model 3: state-of-the-a U-Sodium ion U-Chloride U-Calcium ion U-Magnesium ion U-Magnesium ion U-Phosphate (Inorganic) U-Creathinine

	2
Table 1: Examples of curre (EQA) schemes.	ent variation in models used to assign analytical performance specifications (APS) to External Quality Assurance
EQA Program	Models
CSCQ Switzerland	Governmental regulations (combination of BV and state of the art) and Combination of limits given by scientific societies and 7-score
CTCB France	Z-score/state of the art/limits given by scientific societies or other/limits based on clinical impact
DEKS Denmark	Combination of BV, state of the art and expert opinion
NOKLUS Norway	Fixed percentage limits and based on a combination of BV, state of the art and expert opinion
RCPAQAP Australia	Combination of BV and state of the art
SEHH Spain	Statistical/state of the art/BV
SEQC Spain	Combination of BV and statistical results
SKML The Netherlands	Combination of BV and state of the art
WEQAS UK	Combination of BV and state of the art
CMCEQAS	Combination of state of the art and statistical considerations
External Quality Assurance Quality assurance Program SEQC, Spanish Society of 0	de Qualité, CTCB, Centre Toulousian pour le comride de qualité en Biologie Clinique; DEX, Danish institute of for Laboratories in for Laboratories in foreit laboratories and laboratories assimilations; RENQAP, n of the Royal Callege of Pathologists of Australasia; SEHH Spanish Society of heematology and haemotherapy; Clinical Biochemistry and Molecular Pathology; SMAL, Datch Foundation for Quality Assessment in Medical Labo- Royder, Christan Medical College External Quality Assumes Techemice (NJ Jober) and Laboration.
CIRME	

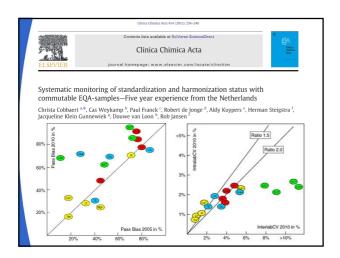

ENE	RAL PAPER		the	re are EQA pr	oviders	
uali	ty assessment s entration and le	cheme org eukocyte co	anizers fo oncentrati		n external	
	Table 1 Criteria used for ac concentration in blood and b the target value) Scheme			Table 2 Percentages of un ticipating EQAS organizer haemoglobin concentration	s for a fixed set	of 262 results of
	Seneme	concentration	concentration	Scheme	Haemoglobin	Leukocyte
	Belgium	$\pm 2s$	$\pm 2s$		concentration	concentratio
	France	$\pm 2s$	$\pm 2s$	Belgium	6.9	7.3
	Spain (two organizers)	$\pm 2s$	$\pm 2s$	Croatia	14.9	15.3
	Croatia	$\pm 1s$	$\pm 1s$	Finland	1.5	3.1
	Germany	±6%	±18%	France	5.4	4.6
	Finland Hungary: consensus	±5% ±3%	±10% ±6%	Hungary: consensus mean method	13.5	19.8
	mean			Russia	15.6	19.8
	Hungary: target value set by reference labs or	±5%	±15%	Spain 1	7.6	4.6
	manufacturers			Spain 2	3.1	2.3
	Russia	±1.64s	$\pm 1.64s$	Switzerland: QUALAB	0.4	0
C	Slovenia	±4%	$\pm 10\%$	(official for licensing)		
U	Switzerland: QUALAB (official for licensing)	±9%	±25%	Switzerland: CSCQ (scientific approach)	0.8	2.0
	Switzerland: CSCQ	+3%	±8%	New York State, USA	0.8	2.3
	(scientific approach)					

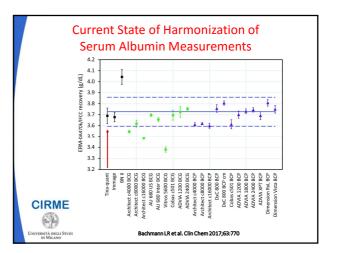


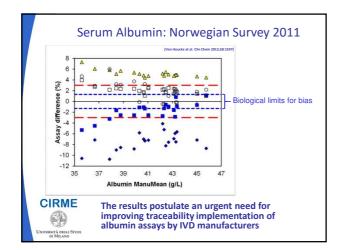

6. Type of model for establishing the APS

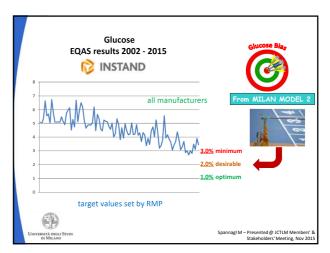

The EQA organiser must state the model used to establish the APS. It is recommended that one of the models from the Milan conference is used [1] although it is also recognised that data from different models may be used to establish a final APS, e.g. state of the art may be used to determine which category within biological variation is selected (optimal, desirable, minimal). These can be described as:

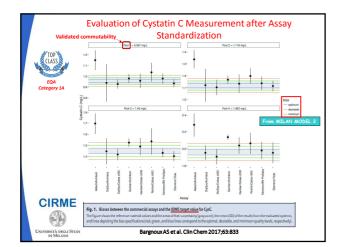
- 1. Outcome-based (Milan model 1a)
- 2. Based on clinical decision applications (Milan model 1b)
- 3. Derived from biological variation (Milan model 2)
- (4. State of the art, defined as the highest level of analytical performance technically achievable in that moment (Milan model 3)

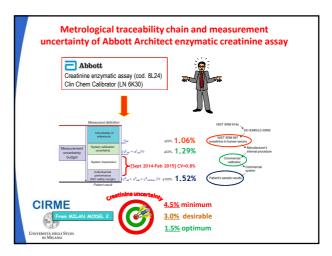




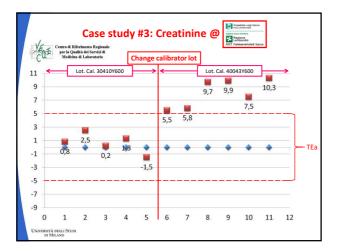








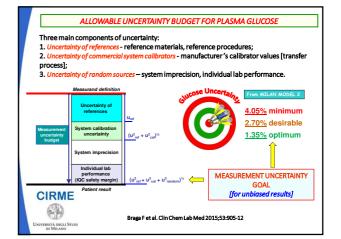
Expected consequences Experts defines reference measurement systems Industry implements traceability to them Users (and industry) abandon non-specific methods EQAs provide commutable materials and trueness-based grading Professionals establish clinically allowable errors Individual laboratories monitor their


performance by participating to EQA and applying allowable limits

C

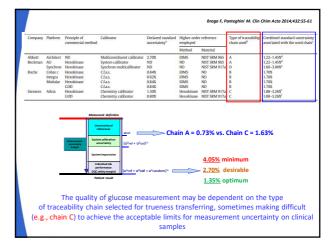
(H)

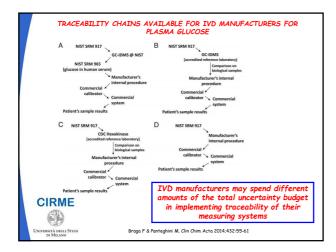
RSITÀ DEGL

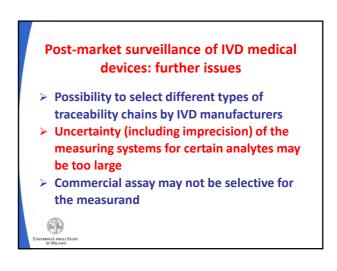

Abbott Diagnostics in a document released on August 2014 informed customers that the internal release specification for CAL was $\pm 5\%$ from the target value of SRM 967a L1, which is more than two times higher than the SRM expanded uncertainty. Lot 40252Y600 (Mean) Lot 40043Y600 Lot 40150Y600 Lot 30410Y600 Insert Range Target: 0.85 0.83 0.82 0.88 0.88 m the ta L +3.53% CIRME SITÀ DEG

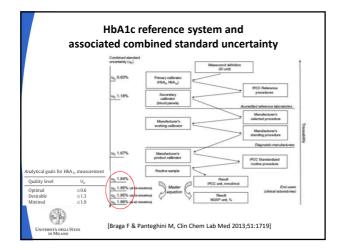
Post-market surveillance of IVD medical devices: further issues

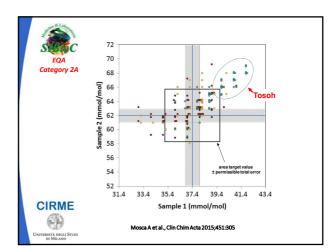
- Possibility to select different types of traceability chains by IVD manufacturers
- Uncertainty (including imprecision) of the measuring systems for certain analytes may be too large
- Commercial assay may not be selective for the measurand

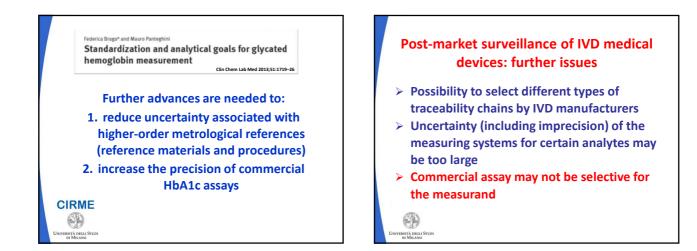


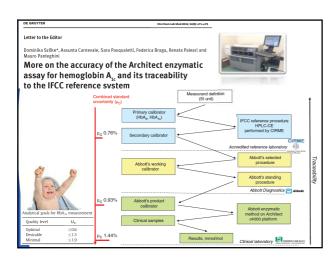

Post-market surveillance of IVD medical devices: further issues Possibility to select different types of traceability chains by IVD manufacturers Uncertainty (including imprecision) of the measuring systems for certain analytes may be too large

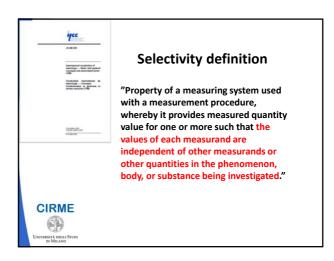

Commercial assay may not be selective for the measurand

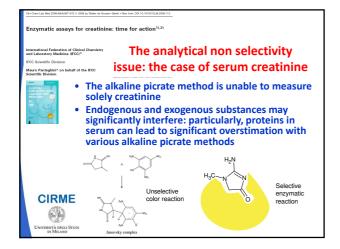


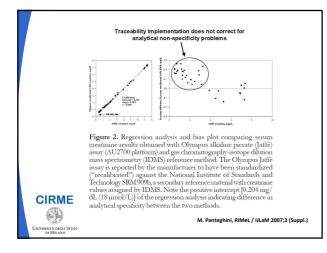

rsità degli Studi di Milano

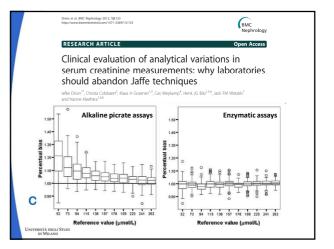


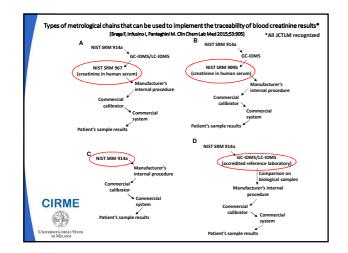


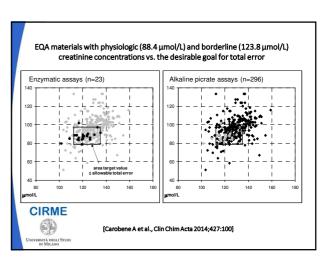


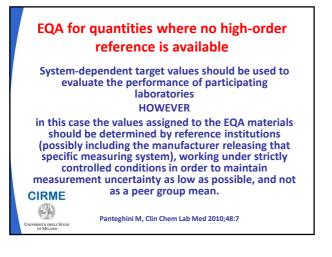


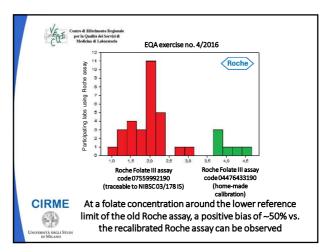


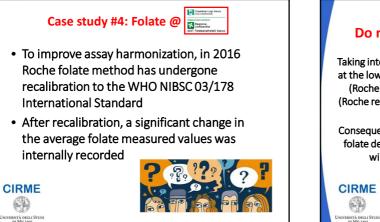


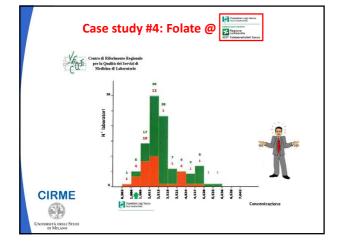


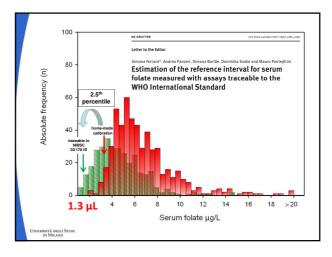


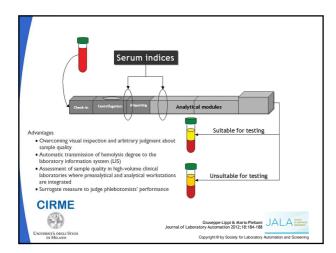

Company	Platform	Principle of commercial method	Calibrator	Declared standard	Higher ord employed	ler reference	Type of traceability	Combined standard uncertainty associat
				uncertainty*	Method	Material	chain used*	with the used chain
Abbott	Architect	Enzymatic	Multigent clin chem calibrator	1.48%	IDMS	NIST SRM 967	A	2.12%-2.79%
		ND	Multiconstituent calibrator	2.7%	IDMS	NIST SRM 967	A	2.12%-2.79%
Beckman	AU	Enzymatic	System calibrator	ND	ND	NIST SRM 967	A	2.12%-2.79%*
		Alkaline picrate	System calibrator	ND	IDMS	NIST SRM 967	A	2.12%-2.79%*
		Uncompensated alkaline picrate	System calibrator	ND	ND	NIST SRM 9096 L2	в	1.51%
	Synchron	ND	LX agua calibrator	ND	IDMS	NIST SRM 914	D	1.5%
Roche	Cobas c	Enzymatic	C.f.a.s.	0.91%	IDMS	ND	D	1.5%*
		Alkaline picrate compensated	C.f.a.s.	1.62%	IDMS	ND	D	1.5%*
		Alkaline picrate rate-blanked and compensated	C.f.a.s.	1.42%	IDMS	ND	D	1.5%*
	Integra/Cobas c111	Enzymatic	C.f.a.s	1.06%	IDMS	ND	D	1.5%
	Integra400/Cobas c111	Alkaline picrate compensated	C.f.a.s	0.30%	IDMS	ND	D	1.5%*
	Integra800	Alkaline picrate compensated	Clas	0.72%	IDMS	ND	D	1.5%
	Modular	Enzymatic	C.f.a.s	0.91%	IDMS	ND	D	1.5%*
		Alkaline picrate compensated	C.f.a.s	1.38%	IDMS	ND	D	1.5%*
	L	Alkaline picrate rate-blanked and compensated	C.f.a.s	0.79%	IDMS	ND	D	1.5%*
Siemens	Dimension Vista	Enzymatic	ECREA calibrator A	5.08%	ND	NIST SRM 914a	C	NA
			ECREA calibrator B	3.16%	ND	NIST SRM 914a	i i	NA
		Alkaline picrate	Chemistry calibrator	1.6%	GC-IDMS	NIST SRM 914a	D	1.5%*
	Advia	Enzymatic	Chemistry calibrator	0.45%	IDMS	NIST SRM 914a	A	2.12%-2.79%
			,			NIST SRM 967	N N	
		Alkaline picrate rate-blanked	Chemistry calibrator	1.6%	IDMS	NIST SRM 967	A	2.12%-2.79%
		and compensated					- TA	

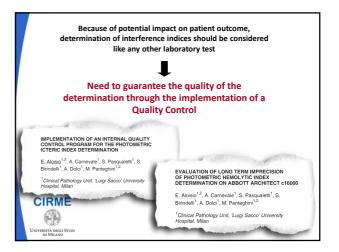




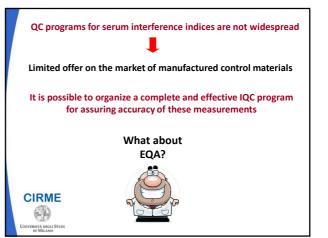


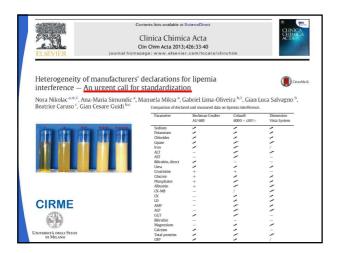



Taking into account the ~50% difference experimentally found at the lower reference limit (LRL) level, the shift from 4.6 μ g/L (Roche recommended LRL for old calibration) to 3.9 μ g/L (Roche recommended LRL for recalibrated assay) appeared to be inconsistent.


Consequently, a misleading overestimate of the prevalence of folate deficiency is expected if the recalibrated Roche assay will be used together the manufacturer's newly recommended LRL.

Ferraro S, Panzeri A, Panteghini M. Clin Chem Lab Med 2017;55:1262–75

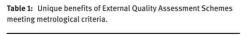


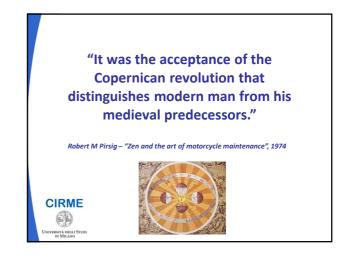




ELSEVIER	journ	Contents lists evailable i Clinica Chim al homepage: www.elsev	ica Acta	him	ALTINGA METANGA	
Harmonizatio it possible?	n of automate	ed hemolysis index	assessment a	nd use: Is	'n'nä	ÖD
Alberto Dolci ^{3,4} , ⁴ Cinical Chemicity Laboratio ⁶ Gente for Metrological Trace	y, University Hospital "Loigi S		ri			
able 1 haracteristics of hemolysis in	dex [HI] test parame	ters on different commercial	platforms.			22
Company/platform	Interferent material used	Maximum concentration of hemoglobin tested [g/]	Sample volume for HI testing [µl]	Diluent type [volume] [µl]	Read wavelengths [nm]	HI report
Abbott Architect	Fresh erythrocyte hemolysate	20	5.3	Saline [200]	572/604; 628/660	5 levels
	Fresh erythrocyte hemolysate Fresh erythrocyte hemolysate		5.3 2.0-1.6	Saline [200] Saline [150]	572/604; 628/660 410/480; 600/800	5 levels 6 levels
Abbott Architect Beckman Coulter AU Beckman Coulter Synchron	hemolysate Fresh erythrocyte	5				
Beckman Coulter AU	hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte	5 5	2.0-1.6	Saline [150] Tris buffer	410/480; 600/800	6 levels
Beckman Coulter AU Beckman Coulter Synchron	hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte	5 5 5-10	2.0-1.6	Saline [150] Tris buffer pH 7.6 [200]	410/480; 600/800 340, 410, 470, 600, 670	6 levels 11 levels
Beckman Coulter AU Beckman Coulter Synchron Ortho Vitros Roche Cobas & Integra Siemens Advia	hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte	5 5 5–10 10	2.0-1.6 14 35*	Saline [150] Tris buffer pH7.6 [200] Undiluted	410/480; 600/800 340, 410, 470, 600, 670 522/750	6 levels 11 levels Concentration units Absolute numbers
Beckman Coulter AU Beckman Coulter Synchron Ortho Vitros Roche Cobas & Integra	hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte hemolysate Fresh erythrocyte	5 5 5-10 10 5.25	2.0-1.6 14 35* 6	Saline [150] Tris buffer pH7.6 [200] Undiluted Saline [150]	410/480; 600/800 340, 410, 470, 600, 670 522/750 570/600	6 levels 11 levels Concentration units Absolute numbers [range: 1–1000]

Constraints limiting the introduction of EQA that meet metrological criteria


- Technical aspects: lack of certified control materials or difficulties to prepare commutable samples
- Practical considerations: complicated logistics of distribution of frozen samples
- Educational limitations: lack of awareness of which quality factors make an EQA important
- Economic concerns: higher costs



- Giving objective information about quality of individual laboratory performance
- Creating evidence about intrinsic standardisation status/ equivalence of the examined assays
- Serving as management tool for the clinical laboratory and IVD manufacturers, forcing them to investigate and eventually fix the identified problem
- Helping those manufacturers that produce superior products and systems to demonstrate the superiority of those products
- Identifying analytes that need improved harmonisation and stimulating and sustaining standardisation initiatives that are needed to support clinical practice guidelines
- Abandonment by users (and consequently by industry) of onspecific methods and/or of assays with demonstrated insufficient quality
 - [Ferraro S, Braga F, Panteghini M. Clin Chem Lab Med 2016;54:523]

